IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001271.html
   My bibliography  Save this article

Effect of irrigation salinity on yield and quality of seeds in different quinoa genotypes

Author

Listed:
  • Yousfi, Salima
  • Shahid, Mohammad
  • Thushar, Sumitha
  • Ferreira, João Pedro
  • Serret, Maria Dolors
  • Araus, José Luis

Abstract

Subtropical arid regions face challenges such as high temperatures, poor soil fertility, and saline soils and water. Quinoa (Chenopodium quinoa Willd.) is well-suited for these areas, particularly in the Middle East and North Africa, where it is cultivated with saline irrigation. This study evaluated the seed yield and quality of eleven quinoa genotypes under two salinity levels (1 and 15 dSm−1) in sandy soils at the International Center for Biosaline Agriculture (Dubai, UAE). Key traits measured included seed yield (SY), biomass, plant height (PH), days to flowering (DF) and maturity (DM), thousand seed weight (TSW), and carbon (δ13C) and nitrogen (δ15N) isotope composition, alongside nitrogen, mineral, and essential amino acid content. Salinity reduced PH and biomass by 20 %, TSW by 6 %, and SY by 30 %, although the ICBA-Q5 variety showed positive effects on SY and biomass under saline conditions. Salinity increased δ13C and δ15N and had a minor impact on minerals, with moderate increases in zinc and sulfur. Amino acids showed slight reductions in isoleucine, leucine, and threonine. Genotypic effects were more significant than salinity, with Ames-13757 performing best for SY and biomass under both control and saline conditions, and NSL-106399 displaying the highest amino acid content under salinity. δ13C and DF negatively correlated with SY, while δ15N was linked negatively to some minerals and amino acids. The study found a low trade-off between seed yield and quality under salinity. Quinoa is highly adaptable to saline irrigation in the UAE, and genotype selection is key for optimizing yield and quality.

Suggested Citation

  • Yousfi, Salima & Shahid, Mohammad & Thushar, Sumitha & Ferreira, João Pedro & Serret, Maria Dolors & Araus, José Luis, 2025. "Effect of irrigation salinity on yield and quality of seeds in different quinoa genotypes," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001271
    DOI: 10.1016/j.agwat.2025.109413
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rezzouk, Fatima Zahra & Shahid, Mohammad Ahmed & Elouafi, Ismahane A. & Zhou, Bangwei & Araus, José L. & Serret, Maria D., 2020. "Agronomic performance of irrigated quinoa in desert areas: Comparing different approaches for early assessment of salinity stress," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    3. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    4. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    5. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    6. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    7. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    8. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    9. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    10. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    11. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    12. Messay Abera & Mekete Dessie & Hailu Kendie Addis & Desale Kidane Asmamaw, 2025. "Modeling Maize Production and Water Productivity Under Deficit Irrigation and Mulching as Sustainable Agricultural Water Management Strategies in Semiarid Areas," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    13. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    14. Soto-García, M. & Martínez-Alvarez, V. & García-Bastida, P.A. & Alcon, F. & Martin-Gorriz, B., 2013. "Effect of water scarcity and modernisation on the performance of irrigation districts in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 124(C), pages 11-19.
    15. Alomran, Abdulrasoul Mosa & Louki, Ibrahim Idriss, 2024. "Impact of irrigation systems on water saving and yield of greenhouse and open field cucumber production in Saudi Arabia," Agricultural Water Management, Elsevier, vol. 302(C).
    16. Neal, J.S. & Fulkerson, W.J. & Hacker, R.B., 2011. "Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 759-774, March.
    17. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    18. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    19. Auci, Sabrina & Pronti, Andrea, 2023. "Irrigation technology adaptation for a sustainable agriculture: A panel endogenous switching analysis on the Italian farmland productivity," Resource and Energy Economics, Elsevier, vol. 74(C).
    20. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.