IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005973.html
   My bibliography  Save this article

Optimizing planting management practices considering a suite of crop water footprint indicators —A case-study of the Fengjiashan Irrigation District

Author

Listed:
  • Yuan, Yujie
  • Wang, Jichao
  • Gao, Xuerui
  • Huang, Kejing
  • Zhao, Xining

Abstract

Irrational allocation of water resources, and excessive fertilization are the main problems facing the sustainable development of agriculture in China. Reducing agricultural water consumption and the impact of agricultural non-point source pollution are key to sustainable and healthy development for regional agriculture. The water footprint theory provides an important methodological tool for agricultural production and water resource management. However, most of the previous studies involve simple scenario comparison or assess the influence of individual factors on the crop water footprint. An integrated methodological and technological framework for optimizing planting structures and management strategies in irrigation districts, which simultaneously considers blue, green, and grey water footprints, has yet to be developed. Based on this, taking Fengjiashan Irrigation District (FID) as an example, the APEX model was introduced to estimate yield and evapotranspiration under different crop types, irrigation systems, fertilization conditions, and planting structures to quantify crop water footprints. Subsequently, an optimization model of plant structure and management practices based on water footprint was developed, which was solved by multi-objective particle swarm optimization. Finally, the optimization scheme of crop planting management with low-water-consumption and low-pollution in FID was identified. The results showed that 110 % of the irrigation quota and 75 % of current fertilization were the most suitable irrigation and fertilization strategy in FID. In the path of planting structure, it was necessary to reduce the area of multiple planting and increase the area of monocropping. Under the optimal planting management practices, the total blue, green, and grey water footprint of the irrigated district changed by −12.3 %, 9.2 %, and −18.3 %. After optimization, the net income of crop planting in the irrigated area increased by 4.7 %.

Suggested Citation

  • Yuan, Yujie & Wang, Jichao & Gao, Xuerui & Huang, Kejing & Zhao, Xining, 2025. "Optimizing planting management practices considering a suite of crop water footprint indicators —A case-study of the Fengjiashan Irrigation District," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005973
    DOI: 10.1016/j.agwat.2024.109261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunyang He & Zhifeng Liu & Jianguo Wu & Xinhao Pan & Zihang Fang & Jingwei Li & Brett A. Bryan, 2021. "Future global urban water scarcity and potential solutions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zhang, Bangbang & Feng, Gary & Kong, Xiangbin & Lal, Rattan & Ouyang, Ying & Adeli, Ardeshir & Jenkins, Johnie N., 2016. "Simulating yield potential by irrigation and yield gap of rainfed soybean using APEX model in a humid region," Agricultural Water Management, Elsevier, vol. 177(C), pages 440-453.
    3. Hua, En & Wang, Xinyu & Engel, Bernie A. & Qian, Haiyang & Sun, Shikun & Wang, Yubao, 2021. "Water competition mechanism of food and energy industries in WEF Nexus: A case study in China," Agricultural Water Management, Elsevier, vol. 254(C).
    4. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Luo, Yao & Wang, Hongya, 2019. "Modeling the impacts of agricultural management strategies on crop yields and sediment yields using APEX in Guizhou Plateau, southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 325-338.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yu & Ren, Chongfeng & Zhang, Hongbo & Xie, Zhishuai & Wang, Yashi, 2022. "Managing irrigation water resources with economic benefit and energy consumption: an interval linear multi-objective fractional optimization model under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Wu, Hui & Li, Xiaojuan & Lu, Hongna & Tong, Ling & Kang, Shaozhong, 2023. "Crop acreage planning for economy- resource- efficiency coordination: Grey information entropy based uncertain model," Agricultural Water Management, Elsevier, vol. 289(C).
    3. Yue, Qiong & Guo, Ping & Wu, Hui & Wang, Youzhi & Zhang, Chenglong, 2022. "Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty," Agricultural Systems, Elsevier, vol. 196(C).
    4. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Li, Mo & Chen, Yingshan & Liu, Dong & Xue, Min & Wang, Yijia & Fu, Qiang, 2024. "Synergetic management of the water-energy-food nexus for cropland ecosystems under climate change: Toward a multistakeholder-based systematic optimization approach," Renewable Energy, Elsevier, vol. 220(C).
    6. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Wang, Taishan & Zhang, Junlong & You, Li & Zeng, Xueting & Ma, Yuan & Li, Yongping & Huang, Guohe, 2023. "Optimal design of two-dimensional water trading considering hybrid “three waters”-government participation for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 288(C).
    8. Kılkış, Şiir & Ulpiani, Giulia & Vetters, Nadja, 2024. "Visions for climate neutrality and opportunities for co-learning in European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    9. Min Ge & Kaili Yu & Ange Ding & Gaofeng Liu, 2022. "Input-Output Efficiency of Water-Energy-Food and Its Driving Forces: Spatial-Temporal Heterogeneity of Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 19(3), pages 1-15, January.
    10. Flores, Francisco & Feijoo, Felipe & DeStephano, Paelina & Herc, Luka & Pfeifer, Antun & Duić, Neven, 2024. "Assessment of the impacts of renewable energy variability in long-term decarbonization strategies," Applied Energy, Elsevier, vol. 368(C).
    11. Christian P. Schneider, 2024. "Implementing the Resource Nexus approach: the contribution of internationalising German businesses," Sustainability Nexus Forum, Springer, vol. 32(1), pages 1-13, December.
    12. Liu, Mengyu & Zhou, Xiong & Huang, Guohe & Li, Yongping, 2024. "The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically," LSE Research Online Documents on Economics 124431, London School of Economics and Political Science, LSE Library.
    13. A. L. Hamilton & P. M. Reed & R. S. Gupta & H. B. Zeff & G. W. Characklis, 2024. "Resilient water infrastructure partnerships in institutionally complex systems face challenging supply and financial risk tradeoffs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    15. Beiying Li & Conghe Liu & Jingjing Bai & Yikun Huang & Run Su & Yan Wei & Bin Ma, 2024. "Strategy to mitigate substrate inhibition in wastewater treatment systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.
    17. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    18. Razieh Haddad & Sajad Najafi Marghmaleki & Hamid Kardan Moghaddam & Mehdi Mofidi & Mohammad Mirzavand & Saman Javadi, 2025. "Improving the management of agricultural water resources to provide Gavkhuni wetland ecological water right in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 3549-3572, February.
    19. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Xiang Gao & Zhichao Yang & Wen Zhang & Bingcai Pan, 2024. "Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.