IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005936.html
   My bibliography  Save this article

Dynamics and associations of selected agrometeorological variables in Robusta growing regions of Uganda

Author

Listed:
  • Ssembajwe, Ronald
  • Mulinde, Catherine
  • Ddumba, Saul D.
  • Kagezi, Godfrey H.
  • Opio, Ronald
  • Kobusinge, Judith
  • Mugagga, Frank
  • Bamutaze, Yazidi
  • Gidudu, Anthony
  • Arinaitwe, Geoffrey
  • Voda, Mihai

Abstract

As climate variability increases with extremes becoming more frequent, the pressure on agriculture only intensifies. A better understanding of the dynamics of direct climate drivers of agricultural productivity is therefore sought. This study aimed to analyze the long-term and recent spatiotemporal trends and associations of selected agrometeorological variables in Robusta Coffee growing regions (RCGR) of Uganda for the period 1980–2021. We employed novel trend test and signal decomposition methods along with machine learning and correlation methods. Results show significantly increasing trends in monthly Vapor Pressure Deficit (VPD) in Amolatar, Kabale and Mbale while, Arua, Kituza and Masindi had decreasing trends. Additionally, significantly decreasing trends in Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) except for Masindi, Abim and Amolatar districts in Kyoga basin were observed. However, there were generally no trends in Climate Water Balance (CWB) and Actual Evapotranspiration (AET) over the study region at 5 % level of significance. BEAST results revealed significant changes in Mbale’s seasonal AET, abrupt changes in both trends and seasons of Kituza AET since 1982 with 10 % chances of occurrence, trend anomalies in Amolatar VPD since 2009. Furthermore, significantly decreasing and increasing trends in Potential Evapotranspiration (PET) and NPP respectively were observed across 70 % of the RCGR. El-Nino/Southern Oscillations accounted for only 2.5 % of the variance in PET. Strong negative and positive associations were observed between PET and NPP in the Northern sub region and Mid-Eastern stretch respectively. Therefore, urgent interventions in form of seasonal schedule restructuring and optimal irrigation use and management to increase productivity especially in areas where CWB is below 0 for over 3 months, offset the increasing VPD and as well effectively manage pest and diseases are recommended.

Suggested Citation

  • Ssembajwe, Ronald & Mulinde, Catherine & Ddumba, Saul D. & Kagezi, Godfrey H. & Opio, Ronald & Kobusinge, Judith & Mugagga, Frank & Bamutaze, Yazidi & Gidudu, Anthony & Arinaitwe, Geoffrey & Voda, Mih, 2025. "Dynamics and associations of selected agrometeorological variables in Robusta growing regions of Uganda," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005936
    DOI: 10.1016/j.agwat.2024.109257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel M. Ahlfeldt & Fabian Bald & Duncan H. W. Roth & Tobias Seidel, 2024. "Measuring quality of life under spatial frictions," Berlin School of Economics Discussion Papers 0057, Berlin School of Economics.
    2. Junjun Cao & Guoyong Leng & Peng Yang & Qingbo Zhou & Wenbin Wu, 2022. "Variability in Crop Response to Spatiotemporal Variation in Climate in China, 1980–2014," Land, MDPI, vol. 11(8), pages 1-13, July.
    3. Li, Zhengpeng & Liu, Shuguang & Tan, Zhengxi & Bliss, Norman B. & Young, Claudia J. & West, Tristram O. & Ogle, Stephen M., 2014. "Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States," Ecological Modelling, Elsevier, vol. 277(C), pages 1-12.
    4. Duyen Nhat Lam Tran & Tien Dinh Nguyen & Thuy Thu Pham & Roberto F. Rañola & Thinh An Nguyen, 2021. "Improving Irrigation Water Use Efficiency of Robusta Coffee ( Coffea canephora ) Production in Lam Dong Province, Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    5. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).
    6. Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
    7. Ahlfeldt, Gabriel M. & Bald, Fabian & Roth, Duncan H.W. & Seidel, Tobias, 2024. "Measuring Quality of Life Under Spatial Frictions," IZA Discussion Papers 17549, Institute of Labor Economics (IZA).
    8. Mulovhedzi, N.E. & Araya, N.A. & Mengistu, M.G. & Fessehazion, M.K. & du Plooy, C.P. & Araya, H.T. & van der Laan, M., 2020. "Estimating evapotranspiration and determining crop coefficients of irrigated sweet potato (Ipomoea batatas) grown in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 233(C).
    9. Derick Ansyijar Kuule & Benard Ssentongo & Paul John Magaya & Gordon Yofesi Mwesigwa & Isaac Tom Okurut & Kenneth Nyombi & Anthony Egeru & John Robert Stephen Tabuti, 2022. "Land Use and Land Cover Change Dynamics and Perceived Drivers in Rangeland Areas in Central Uganda," Land, MDPI, vol. 11(9), pages 1-19, August.
    10. ., 2024. "Spatial planning systems in the 20th century," Chapters, in: Spatial Planning as Institutional Design, chapter 2, pages 9-52, Edward Elgar Publishing.
    11. Adrián Cardil & Marcos Rodrigues & Mario Tapia & Renaud Barbero & Joaquin Ramírez & Cathelijne R. Stoof & Carlos Alberto Silva & Midhun Mohan & Sergio de-Miguel, 2023. "Climate teleconnections modulate global burned area," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    5. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    6. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    8. Amanda M. Nelson & Nicolas E. Quintana Ashwell & Christopher D. Delhom & Drew M. Gholson, 2022. "Leveraging Big Data to Preserve the Mississippi River Valley Alluvial Aquifer: A Blueprint for the National Center for Alluvial Aquifer Research," Land, MDPI, vol. 11(11), pages 1-17, October.
    9. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    10. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Jitendra Rajput & Man Singh & Khajanchi Lal & Manoj Khanna & Arjamadutta Sarangi & Joydeep Mukherjee & Shrawan Singh, 2024. "Selection of alternate reference evapotranspiration models based on multi-criteria decision ranking for semiarid climate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11171-11216, May.
    12. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Reddy, Krishna N. & Sui, Ruixiu & Singh, Gurbir, 2022. "Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region," Agricultural Water Management, Elsevier, vol. 262(C).
    13. Yuyan Pan & Yanpeng Gao & Hongchang Qian, 2025. "Progressive Framework for Analyzing Driving Mechanisms of Ecosystem Services in Resource-Exhausted Cities: A Case Study of Fushun, China," Land, MDPI, vol. 14(5), pages 1-26, April.
    14. Alina Petronela Alexoaei & Valentin Cojanu & Cristiana-Ioana Coman, 2021. "On Sustainable Consumption: The Implications of Trade in Virtual Water for the EU’s Food Security," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    15. Liu, Zebin & Yu, Songping & Xu, Lihong & Wang, Yanhui & Yu, Pengtao & Chao, Yang, 2023. "Differentiated responses of daytime and nighttime sap flow to soil water deficit in a larch plantation in Northwest China," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
    17. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Chastain, Daryl R. & Reddy, Krishna N. & Simmons, Clyde Douglas, 2023. "Eddy covariance quantification of carbon and water dynamics in twin-row vs. single-row planted corn," Agricultural Water Management, Elsevier, vol. 281(C).
    18. Chandra, Ankit & Heeren, Derek M. & Odhiambo, Lameck & Brozović, Nicholas, 2023. "Water-energy-food linkages in community smallholder irrigation schemes: Center pivot irrigation in Rwanda," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Martí, Pau & López-Urrea, Ramón & Mancha, Luis A. & González-Altozano, Pablo & Román, Armand, 2024. "Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks," Agricultural Water Management, Elsevier, vol. 300(C).
    20. Sannigrahi, Srikanta, 2017. "Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region, India using seven ecosystem models," Ecological Modelling, Elsevier, vol. 356(C), pages 73-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.