IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005766.html
   My bibliography  Save this article

Determination of the optimal frequency and duration of micro-spray patterns for high-temperature environment tomatoes based on the Fuzzy Borda model

Author

Listed:
  • Xue, Run
  • Zhang, Chuan
  • Yan, Haofang
  • Disasa, Kinde Negessa
  • Lakhiar, Imran Ali
  • Akhlaq, Muhammad
  • Hameed, Muhammad Usman
  • Li, Jun
  • Ren, Jiangtao
  • Deng, Shuaishuai
  • Wang, Biyu
  • Bao, Rongxuan

Abstract

High summer temperatures have a significant impact on the yield reduction and quality of greenhouse crops. Micro-spray has been increasingly utilized in greenhouses to enhance crop productivity and quality. Nevertheless, micro-spray applications' optimal frequency and duration vary depending on the specific temperature conditions to enhance the fruit quality. Thus, this study implemented different micro-spray frequencies, F1 (once per hour) and F2 (twice per hour), and durations, D1 (1 minute), D2 (2 minutes from 11:00–13:00 and 1 minute during other times) and D3 (2 minutes) treatments to study the impact of micro-spray durations and frequencies on tomato chlorophyll fluorescence parameters, growth indicators, and fruit quality, and constructed the Fuzzy Borda combination evaluation (FB) model to obtain the optimal micro-spray treatments. The results showed that micro-spray effectively improved tomato growth indicators and fruit quality. The micro-spray restored part of the photosynthetic mechanism of tomato that was stopped due to high temperature and reduced the photoprotective mechanism, actively dissipating excess energy into heat. F2 had a better effect on improving plant height, LAI, and SPAD than F1. All micro-spray treatments increased yield but decreased WPc in all of them. Meanwhile, the yield was significantly and positively correlated with LAI and SPAD. Thus, yield could be predicted from LAI and SPAD. In the FB model, F1D3 and F2D1 treatments had the highest scores and rankings of tomatoes, which can be applied to protect tomatoes against heat damage and maximize the economic benefits. Meanwhile, TOPSIS, RSR, or VIKOR can be used to quickly assess tomatoes' superiority or inferiority under different treatments because they had the highest correlation with the FB. In future studies, we need to further investigate the functional distribution of mist and the process of mist changes, which could help us better understand the mechanism of micro-spray.

Suggested Citation

  • Xue, Run & Zhang, Chuan & Yan, Haofang & Disasa, Kinde Negessa & Lakhiar, Imran Ali & Akhlaq, Muhammad & Hameed, Muhammad Usman & Li, Jun & Ren, Jiangtao & Deng, Shuaishuai & Wang, Biyu & Bao, Rongxua, 2025. "Determination of the optimal frequency and duration of micro-spray patterns for high-temperature environment tomatoes based on the Fuzzy Borda model," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005766
    DOI: 10.1016/j.agwat.2024.109240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Zhu, Keyu & Zhao, Yuhong & Ma, Yongbo & Zhang, Qi & Kang, Zhen & Hu, Xiaohui, 2022. "Drip irrigation strategy for tomatoes grown in greenhouse on the basis of fuzzy Borda and K-means analysis method," Agricultural Water Management, Elsevier, vol. 267(C).
    5. Fekadu Hailu Hirpo & Marshet Nigatu Gebeyehu, 2019. "Review on the Effects of Climate Change Variability on Horticultural Productivity," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 17(4), pages 130-134, March.
    6. Tian, Wei & Su, Chenfei & Zhang, Nan & Zhao, Yuwei & Tang, Long, 2024. "Simulation of the physiological and photosynthetic characteristics of C3 and C4 plants under elevated temperature and CO2 concentration," Ecological Modelling, Elsevier, vol. 495(C).
    7. Jian, Huajian & Gao, Zhen & Guo, Yingying & Xu, Xinyan & Li, Xiaoyu & Yu, Meijia & Liu, Guangzhou & Bian, Dahong & Cui, Yanhong & Du, Xiong, 2024. "Supplemental irrigation mitigates yield loss of maize through reducing canopy temperature under heat stress," Agricultural Water Management, Elsevier, vol. 299(C).
    8. Chuntong Meng & Zhaoyue Wang & Ying Cai & Fengyi Du & Jinyang Chen & Chunhua Xiao, 2022. "Effects of Planting Density and Nitrogen (N) Application Rate on Light Energy Utilization and Yield of Maize," Sustainability, MDPI, vol. 14(24), pages 1-13, December.
    9. Cui, Ningbo & Wang, Mingjun & Zou, Qingyao & Wang, Zhihui & Jiang, Shouzheng & Chen, Xi & Zha, Yuxuan & Xiang, Lu & Zhao, Lu, 2023. "Water-potassium coupling at different growth stages improved kiwifruit (Actinidia spp.) quality and water/potassium productivity without yield loss in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    11. Alejandro López-Martínez & Diego Luis Valera-Martínez & Francisco Domingo Molina-Aiz & María de los Ángeles Moreno-Teruel & Araceli Peña-Fernández & Karlos Emmanuel Espinoza-Ramos, 2019. "Analysis of the Effect of Concentrations of Four Whitening Products in Cover Transmissivity of Mediterranean Greenhouses," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    12. Yan, Haofang & Deng, Shuaishuai & Zhang, Chuan & Wang, Guoqing & Zhao, Shuang & Li, Mi & Liang, Shaowei & Jiang, Jianhui & Zhou, Yudong, 2023. "Determination of energy partition of a cucumber grown Venlo-type greenhouse in southeast China," Agricultural Water Management, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Cai, Zelin & Bai, Jiaming & Li, Rui & He, Daiwei & Du, Rongcheng & Li, Dayong & Hong, Tingting & Zhang, Zhi, 2023. "Water and nitrogen management scheme of melon based on yield−quality−efficiency matching perspective under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 285(C).
    3. Dong, Zhenlin & Wan, Sumei & Ma, Yunzhen & Wang, Jinbin & Feng, Lu & Zhai, Yunlong & Li, Tiantian & Cui, Zhengjun & Wang, Jian & Yang, Beifang & Yang, Ze & Zhao, Zhan & Yan, Fei & Xiong, Shiwu & Li, Y, 2025. "Productivity of water and heat resources and cotton yield response to cropping pattern and planting density in cotton fields in arid area," Agricultural Water Management, Elsevier, vol. 307(C).
    4. Xing, Yingying & Chen, Mengru & Wang, Xiukang, 2025. "Enhancing water use efficiency and fruit quality in jujube cultivation: A review of advanced irrigation techniques and precision management strategies," Agricultural Water Management, Elsevier, vol. 307(C).
    5. Nicolette Matthews & Bennie Grové & Johannes Hendrikus Barnard, 2025. "Economic Analysis of Segmented Soil Salinity Management Using Current Irrigation Technology," Agriculture, MDPI, vol. 15(8), pages 1-14, April.
    6. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    7. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    8. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    11. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    12. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Sun, Guangzhao & Chen, Shuaihong & Zhang, Shaowu & Chen, Shaomin & Liu, Jie & He, Qiong & Hu, Tiantian & Zhang, Fucang, 2024. "Responses of leaf nitrogen status and leaf area index to water and nitrogen application and their relationship with apple orchard productivity," Agricultural Water Management, Elsevier, vol. 296(C).
    17. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    18. Masseroni, Daniele & Gangi, Fabiola & Galli, Andrea & Ceriani, Rodolfo & De Gaetani, Carlo & Gandolfi, Claudio, 2022. "Behind the efficiency of border irrigation: Lesson learned in Northern Italy," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Sriphirom, Patikorn & Rossopa, Benjamas, 2023. "Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand," Agricultural Water Management, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.