IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v307y2025ics0378377424005791.html
   My bibliography  Save this article

Enhancing water use efficiency and fruit quality in jujube cultivation: A review of advanced irrigation techniques and precision management strategies

Author

Listed:
  • Xing, Yingying
  • Chen, Mengru
  • Wang, Xiukang

Abstract

Jujube trees play a crucial role in sustainable agriculture in China's water-scarce regions due to their exceptional drought resistance and adaptability to arid environments. However, there is an urgent need to enhance water use efficiency and improve fruit quality in jujube cultivation to meet the growing agricultural demands. This literature review explores current strategies for water utilization in jujube tree cultivation, focusing on advanced irrigation techniques and their effects on fruit yield and quality. The review systematically examines precise irrigation management practices tailored to the critical growth stages of jujube trees. Key findings indicate that the adoption of precise irrigation strategies, such as drip and micro-irrigation, minimizes water waste and effectively meets the specific water requirements of jujube trees. Innovative contributions highlighted in the review include the integration of advanced intelligent irrigation systems that utilize soil moisture monitoring, weather data analysis, and combined water-fertilizer management. These technologies enhance the automation and precision of irrigation practices, thereby reducing reliance on external water sources, improving soil moisture retention, decreasing erosion, and mitigating environmental pollution. The review underscores the importance of novel practices such as biopolymer-based fertilizers, the intelligent integration of water and fertilizers, and IoT-based frameworks, all of which significantly enhance water use efficiency and economic productivity in jujube cultivation. The integration of full ground mulching, strategic fertilization, advanced irrigation systems, and predictive modeling constitutes a critical approach to effective water resource management. In conclusion, optimizing water resource management through precise irrigation techniques and intelligent monitoring is essential for enhancing jujube yield, fruit quality, and economic benefits. The findings highlight the necessity of adopting advanced technologies and management practices that are specifically tailored to the physiological needs of jujube trees and the unique regional conditions. Future research should focus on developing more sophisticated irrigation technologies and intelligent management systems to promote sustainable practices, alleviate water scarcity, and minimize the environmental impact of jujube cultivation.

Suggested Citation

  • Xing, Yingying & Chen, Mengru & Wang, Xiukang, 2025. "Enhancing water use efficiency and fruit quality in jujube cultivation: A review of advanced irrigation techniques and precision management strategies," Agricultural Water Management, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005791
    DOI: 10.1016/j.agwat.2024.109243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Cui, Ningbo & Du, Taisheng & Li, Fusheng & Tong, Ling & Kang, Shaozhong & Wang, Mixia & Liu, Xiaozhi & Li, Zhijun, 2009. "Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree," Agricultural Water Management, Elsevier, vol. 96(8), pages 1237-1246, August.
    3. Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    4. Haohao Cui & Mingjiang Yan & Qian Wang & Guanghui Zhang & Huimin Feng & Xujuan Lang, 2024. "Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    5. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    9. Cui, Ningbo & Du, Taisheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Wang, Mixia & Li, Zhijun, 2008. "Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees," Agricultural Water Management, Elsevier, vol. 95(4), pages 489-497, April.
    10. Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    12. Chen, Dianyu & Wang, Youke & Wang, Xing & Nie, Zhenyi & Gao, Zhiyong & Zhang, Linlin, 2016. "Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region," Agricultural Water Management, Elsevier, vol. 178(C), pages 258-270.
    13. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Hoda Galal & Salah Elsayed & Osama Elsherbiny & Aida Allam & Mohamed Farouk, 2022. "Using RGB Imaging, Optimized Three-Band Spectral Indices, and a Decision Tree Model to Assess Orange Fruit Quality," Agriculture, MDPI, vol. 12(10), pages 1-19, September.
    15. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    17. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Li, Hongping & Wang, Yaosheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu & Liu, Chunwei & Qiu, Rangjian, 2022. "Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Ma, Fusheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Du, Taisheng & Hu, Xiaotao & Wang, Mixia, 2007. "Effect of water deficit in different growth stages on stem sap flux of greenhouse grown pear-jujube tree," Agricultural Water Management, Elsevier, vol. 90(3), pages 190-196, June.
    19. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    20. Jiaxin Wang & Xinlin He & Ping Gong & Danqi Zhao & Yao Zhang & Zonglan Wang & Jingrui Zhang, 2022. "Optimization of a Water-Saving and Fertilizer-Saving Model for Enhancing Xinjiang Korla Fragrant Pear Yield, Quality, and Net Profits under Water and Fertilizer Coupling," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    21. Galindo, A. & Cruz, Z.N. & Rodríguez, P. & Collado-González, J. & Corell, M. & Memmi, H. & Moreno, F. & Moriana, A. & Torrecillas, A. & Pérez-López, D., 2016. "Jujube fruit water relations at fruit maturation in response to water deficits," Agricultural Water Management, Elsevier, vol. 164(P1), pages 110-117.
    22. Li, Zhaoyang & Li, Wenhao & Wang, Jiulong & Zhang, Jinzhu & Wang, Zhenhua, 2023. "Drip irrigation shapes the soil bacterial communities and enhances jujube yield by regulating the soil moisture content and nutrient levels," Agricultural Water Management, Elsevier, vol. 289(C).
    23. Muhammad Rashid & Saif Haider & Muhammad Umer Masood & Chaitanya B. Pande & Abebe Debele Tolche & Fahad Alshehri & Romulus Costache & Ismail Elkhrachy, 2023. "Sustainable Water Management for Small Farmers with Center-Pivot Irrigation: A Hydraulic and Structural Design Perspective," Sustainability, MDPI, vol. 15(23), pages 1-29, November.
    24. Zou, Xiaoxia & Li, Yu’e & Cremades, Roger & Gao, Qingzhu & Wan, Yunfan & Qin, Xiaobo, 2013. "Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China," Agricultural Water Management, Elsevier, vol. 129(C), pages 9-20.
    25. Zhaoyang Li & Rui Zong & Tianyu Wang & Zhenhua Wang & Jinzhu Zhang, 2021. "Adapting Root Distribution and Improving Water Use Efficiency via Drip Irrigation in a Jujube ( Zizyphus jujube Mill.) Orchard after Long-Term Flood Irrigation," Agriculture, MDPI, vol. 11(12), pages 1-16, November.
    26. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Bai, Tiecheng & Zhang, Nannan & Wang, Tao & Wang, Desheng & Yu, Caili & Meng, Wenbo & Fei, Hao & Chen, Rengu & Li, Yanhui & Zhou, Baoping, 2021. "Simulating on the effects of irrigation on jujube tree growth, evapotranspiration and water use based on crop growth model," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Zheng, Shunsheng & Jiang, Shouzheng & Cui, Ningbo & Zhao, Lu & Gong, Daozhi & Wang, Yaosheng & Wu, Zongjun & Liu, Quanshan, 2023. "Deficit drip irrigation improves kiwifruit quality and water productivity under rain-shelter cultivation in the humid area of South China," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    6. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    8. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    9. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Wang, Zhihui, 2025. "Deficit irrigation enhances yield and water productivity of apples by inhibiting excessive vegetative growth and improving photosynthetic performance," Agricultural Water Management, Elsevier, vol. 307(C).
    10. Janssens, Pieter & Deckers, Tom & Elsen, Frank & Elsen, Annemie & Schoofs, Hilde & Verjans, Wim & Vandendriessche, Hilde, 2011. "Sensitivity of root pruned ‘Conference’ pear to water deficit in a temperate climate," Agricultural Water Management, Elsevier, vol. 99(1), pages 58-66.
    11. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    12. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    13. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Yu, Xuemei & Niu, Luqi & Zhang, Yuhui & Xu, Zijian & Zhang, Junwei & Zhang, Shuhui & Li, Jianming, 2024. "Vapour pressure deficit affects crop water productivity, yield, and quality in tomatoes," Agricultural Water Management, Elsevier, vol. 299(C).
    15. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Zhang, Wenjiang & Li, Hongping & Li, Xiaomeng & Lv, Min & Liu, Chunwei & Qiu, Rangjian & Wang, Zhihui, 2025. "Effects of deficit drip irrigation at different growth stages on citrus leaf physiology, fruit growth, yield, and water productivity in South China," Agricultural Water Management, Elsevier, vol. 307(C).
    16. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    17. Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
    19. Ali, Nawab & Dong, Younsuk & Lavely, Emily, 2024. "Impact of irrigation scheduling on yield and water use efficiency of apples, peaches, and sweet cherries: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 306(C).
    20. Xiaopeng Li & Yupeng Li & Zhong Zhang & Xingang Li, 2015. "Influences of Environmental Factors on Leaf Morphology of Chinese Jujubes," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.