IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421006843.html
   My bibliography  Save this article

Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China

Author

Listed:
  • Chen, Fei
  • Cui, Ningbo
  • Jiang, Shouzheng
  • Li, Hongping
  • Wang, Yaosheng
  • Gong, Daozhi
  • Hu, Xiaotao
  • Zhao, Lu
  • Liu, Chunwei
  • Qiu, Rangjian

Abstract

Fruit quality as affected by water deficit applied at different growth stages remain largely elusive. Therefore, to evaluate the effects of deficit irrigation (DI) timing and degree under drip irrigation on fruit physical and chemical quality of citrus, the low (D15%), mild (D30%), moderate (D45%) and severe (D60%) water deficit treatments were set at the growth stage I, II, III and IV, respectively, with a control treatment (CK), during two growing seasons. The application of water deficit under drip irrigation at the early growth stage (stages I and II) had remarkable effects on physical quality of citrus. The I-D45% treatment increased the single fruit weight and firmness by 5.78−9.85% and 13.25−17.14%, respectively, and the II-D15% treatment improved them by 6.67−9.15% and 1.43−14.46%. The application of water deficit under drip irrigation at the middle growth stage (stage III) had remarkable effects on physical and chemical quality of citrus. There was no remarkable reduction in fruit physical quality under the III-D15% treatment, while the contents of fructose, glucose, sucrose, vitamin C (Vc), total soluble solids (TSS), and MI (TSS/TA (titratable acidity) ratio) were significantly increased by 12.95−17.67%, 9.26−17.84%, 7.90−19.65%, 9.10−29.20%, 7.68−15.96% and 18.07−29.19% (P < 0.05), respectively, and TA was reduced by 8.82−9.91%. The application of water deficit under drip irrigation at the late growth stage (stage IV) had remarkable effects on chemical quality of citrus. The IV-D30% treatment significantly increased the contents of fructose, glucose, sucrose, Vc, TSS and MI by 22.95−25.54%, 16.47−17.79%, 18.56−19.54%, 25.63−50.23%, 12.49−20.59%, and 18.87−24.47% (P < 0.05), respectively, while reduced TA by 3.60−5.88%. Therefore, I-D45% and II-D15% treatments significantly improved physical quality of citrus by saving about 178 and 154 m3/ha at stage I and II, respectively; III-D15% and IV-D30% treatments significantly increased chemical quality of citrus by saving about 635 and 782 m3/ha at stage III and IV, respectively, which was demonstrated as the suitable water deficit pattern. And this strategy had no significant effect on yield. Among all the treatments, the IV-D30% treatment improved the fruit quality of citrus most significantly.

Suggested Citation

  • Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Li, Hongping & Wang, Yaosheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu & Liu, Chunwei & Qiu, Rangjian, 2022. "Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006843
    DOI: 10.1016/j.agwat.2021.107407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silveira, Laís Karina & Pavão, Glaucia Cristina & dos Santos Dias, Carlos Tadeu & Quaggio, José Antonio & Pires, Regina Célia de Matos, 2020. "Deficit irrigation effect on fruit yield, quality and water use efficiency: A long-term study on Pêra-IAC sweet orange," Agricultural Water Management, Elsevier, vol. 231(C).
    2. Cui, Ningbo & Du, Taisheng & Li, Fusheng & Tong, Ling & Kang, Shaozhong & Wang, Mixia & Liu, Xiaozhi & Li, Zhijun, 2009. "Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree," Agricultural Water Management, Elsevier, vol. 96(8), pages 1237-1246, August.
    3. Kuşçu, Hayrettin & Turhan, Ahmet & Demir, Ali Osman, 2014. "The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 133(C), pages 92-103.
    4. Wang, Feng & Kang, Shaozhong & Du, Taisheng & Li, Fusheng & Qiu, Rangjian, 2011. "Determination of comprehensive quality index for tomato and its response to different irrigation treatments," Agricultural Water Management, Elsevier, vol. 98(8), pages 1228-1238, May.
    5. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    6. Pérez-Pastor, A. & Ruiz-Sánchez, Mª C. & Domingo, R., 2014. "Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees," Agricultural Water Management, Elsevier, vol. 134(C), pages 110-118.
    7. Selahvarzi, Yahya & Zamani, Zabihollah & Fatahi, Reza & Talaei, Ali-Reza, 2017. "Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar)," Agricultural Water Management, Elsevier, vol. 192(C), pages 189-197.
    8. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Gucci, Riccardo & Caruso, Giovanni & Gennai, Clizia & Esposto, Sonia & Urbani, Stefania & Servili, Maurizio, 2019. "Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development," Agricultural Water Management, Elsevier, vol. 212(C), pages 88-98.
    3. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    4. Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    6. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    8. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    12. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    13. Lei Hua & Jianen Gao & Meifang Zhou & Shilun Bai, 2021. "Impacts of Relative Elevation on Soil Nutrients and Apple Quality in the Hilly-Gully Region of the Loess Plateau, China," Sustainability, MDPI, vol. 13(3), pages 1-11, January.
    14. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    15. Zhang, Xianbo & Yang, Hui & Shukla, Manoj K. & Du, Taisheng, 2023. "Proposing a crop-water-salt production function based on plant response to stem water potential," Agricultural Water Management, Elsevier, vol. 278(C).
    16. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    17. Lecaros-Arellano, F. & Holzapfel, E. & Fereres, E. & Rivera, D. & Muñoz, N. & Jara, J., 2021. "Effects of the number of drip laterals on yield and quality of apples grown in two soil types," Agricultural Water Management, Elsevier, vol. 248(C).
    18. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    19. Gong, Xuewen & Qiu, Rangjian & Ge, Jiankun & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Wang, Shunsheng, 2021. "Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.