IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v306y2024ics0378377424005018.html
   My bibliography  Save this article

Horizontal ridging with mulching as the optimal tillage practice to reduce surface runoff and erosion in a Mollisol hillslope

Author

Listed:
  • Wang, Yucheng
  • Guo, Dayong
  • Li, Zheng
  • Shi, Wuliang
  • Li, Bin
  • Hou, Liyuan
  • Zhang, Yi
  • Cui, Jinhu
  • Cao, Ning
  • Zhang, Yubin

Abstract

Soil erosion is amplified by the increased precipitation and rainfall erosivity caused by the changing climate, particularly for global mid-high latitude areas. Yet soil erosion processes and proper tillage practices are not well understood at the crop seedling stage, when the annual precipitation is usually concentrated in these regions. Simulated rainfall experiments were conducted at the rainfall intensities of 50- and 100-mm h−1 to investigate the differences in soil erosion of a 5° hillslope during the maize seedling stage between conservation and conventional tillage measures, including cornstalk mulching (Cm), horizontal ridging (Hr), horizontal ridging + mulching (Hr+Cm), vertical ridging + mulching (Vr+Cm), vertical ridging (Vr) and flat-tillage (CK). The results demonstrated that crops, at the seedling stage, can reduce soil erosion by altering the distribution of raindrops and reduce its kinetic energy. Conservation tillage measures significantly reduced total runoff (11.7 %–100 %) and sediment yield (71.1 %–100 %), delayed runoff-yield start time (85 s–26.1 min), decreased runoff velocity (71.5 %–96.7 %), and reduced runoff and soil loss rates, compared to conventional tillage measures. Mulching showed better performance than Hr. It reduced sediment concentration (∼70.6 %–100 %) by reducing runoff velocity and soil particle filtration. The contour ridge ruptured earlier at 100 mm h−1 than at 50 mm h−1 and changed the characteristics of the soil erosion by providing a larger source of sediment for surface runoff. Runoff rate, rather than soil erodibility, was the key factor affecting soil erosion. Decreasing runoff velocity was more important than controlling the amount of runoff. The Hr + Cm treatment exhibited the lowest soil erosion and is recommended for adoption at the maize seedling stage in sloping farmland. Our findings provide an optimized tillage method to mitigate soil erosion in spring in Northeast China.

Suggested Citation

  • Wang, Yucheng & Guo, Dayong & Li, Zheng & Shi, Wuliang & Li, Bin & Hou, Liyuan & Zhang, Yi & Cui, Jinhu & Cao, Ning & Zhang, Yubin, 2024. "Horizontal ridging with mulching as the optimal tillage practice to reduce surface runoff and erosion in a Mollisol hillslope," Agricultural Water Management, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005018
    DOI: 10.1016/j.agwat.2024.109165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sartori, Martina & Philippidis, George & Ferrari, Emanuele & Borrelli, Pasquale & Lugato, Emanuele & Montanarella, Luca & Panagos, Panos, 2019. "A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion," Land Use Policy, Elsevier, vol. 86(C), pages 299-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    2. Nur Syabeera Begum Nasir Ahmad & Firuza Begham Mustafa & Safiah Yusmah Muhammad Yusoff, 2024. "Spatial prediction of soil erosion risk using knowledge-driven method in Malaysia’s Steepland Agriculture Forested Valley," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15333-15359, June.
    3. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    4. A. S. Strokov & V. S. Krasilnikova & O. V. Cherkasova, 2022. "Economic Valuation of Recovery and Increased Efficiency in Agricultural Land Use," Studies on Russian Economic Development, Springer, vol. 33(4), pages 447-454, August.
    5. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    6. Sartori, Martina & Ferrari, Emanuele & M'Barek, Robert & Philippidis, George & Boysen-Urban, Kirsten & Borrelli, Pasquale & Montanarella, Luca & Panagos, Panos, 2024. "Remaining Loyal to Our Soil: A Prospective Integrated Assessment of Soil Erosion on Global Food Security," Ecological Economics, Elsevier, vol. 219(C).
    7. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    8. Gábor Gyarmati, 2024. "Transformation of the Three Pillars of Agri-Food Sustainability around the COVID-19 Crisis—A Literature Review," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
    9. Sen Chakraborty, Kritika & Chakraborty, Avinandan & Berrens, Robert P., 2023. "Valuing soil erosion control investments in Nigerian agricultural lands: A hedonic pricing model," World Development, Elsevier, vol. 170(C).
    10. Wuepper, David & Borrelli, Pasquale & Mueller, Daniel & Finger, Robert, 2020. "Quantifying the soil erosion legacy of the Soviet Union," Agricultural Systems, Elsevier, vol. 185(C).
    11. Balasubramanya, Soumya & Kafle, Kashi, 2025. "Adoption of land restoration activities in Ethiopia: Understanding gender-labor dimensions," Land Use Policy, Elsevier, vol. 150(C).
    12. Mustafa Nur Istanbuly & Josef Krása & Bahman Jabbarian Amiri, 2022. "How Socio-Economic Drivers Explain Landscape Soil Erosion Regulation Services in Polish Catchments," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    13. Andrii Zabrodskyi & Egidijus Šarauskis & Savelii Kukharets & Antanas Juostas & Gediminas Vasiliauskas & Albinas Andriušis, 2021. "Analysis of the Impact of Soil Compaction on the Environment and Agricultural Economic Losses in Lithuania and Ukraine," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    14. Hunggul Yudono Setio Hadi Nugroho & Tyas Mutiara Basuki & Irfan Budi Pramono & Endang Savitri & Purwanto & Dewi Retna Indrawati & Nining Wahyuningrum & Rahardyan Nugroho Adi & Yonky Indrajaya & Agung , 2022. "Forty Years of Soil and Water Conservation Policy, Implementation, Research and Development in Indonesia: A Review," Sustainability, MDPI, vol. 14(5), pages 1-33, March.
    15. Remus Prăvălie & Pasquale Borrelli & Panos Panagos & Cristiano Ballabio & Emanuele Lugato & Adrian Chappell & Gonzalo Miguez-Macho & Federico Maggi & Jian Peng & Mihai Niculiță & Bogdan Roșca & Cristi, 2024. "A unifying modelling of multiple land degradation pathways in Europe," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Bahalou Horeh, Marziyeh & Haqiqi, Iman, 2020. "Impacts of Economic Growth and Depression in the US, China, and India on Global Land and Water Resources," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304526, Agricultural and Applied Economics Association.
    17. Francesco De Pascale & Eleonora Guadagno, 2025. "Climate Change and High-Quality Agri-Food Production: Perceptions of Risk and Adaptation Strategies in the Calabria Region (Southern Italy)," Sustainability, MDPI, vol. 17(8), pages 1-23, April.
    18. Amandine Valérie Pastor & Joao Pedro Nunes & Rossano Ciampalini & Haithem Bahri & Mohamed Annabi & Mohamed Chikhaoui & Armand Crabit & Stéphane Follain & Jan Jacob Keizer & Jérôme Latron & Feliciana L, 2022. "ScenaLand: a simple methodology for developing land use and management scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-29, December.
    19. Carina B. Colman & Paulo Tarso S. Oliveira & André Almagro & Britaldo S. Soares-Filho & Dulce B. B. Rodrigues, 2019. "Effects of Climate and Land-Cover Changes on Soil Erosion in Brazilian Pantanal," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    20. Giuliano Rocco Romanazzi & Giovanni Ottomano Palmisano & Marilisa Cioffi & Vincenzo Leronni & Ervin Toromani & Romina Koto & Annalisa De Boni & Claudio Acciani & Rocco Roma, 2024. "A Cost–Benefit Analysis for the Economic Evaluation of Ecosystem Services Lost Due to Erosion in a Mediterranean River Basin," Land, MDPI, vol. 13(9), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.