IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v301y2024ics0378377424002865.html
   My bibliography  Save this article

Interaction between burial depth and N source in drip-fertigated maize: Agronomic performance and correlation with spectral indices

Author

Listed:
  • Monistrol, Alba
  • Vallejo, Antonio
  • García-Gutiérrez, Sandra
  • Hermoso-Peralo, Roberto
  • Montoya, Mónica
  • Atencia-Payares, Luz K.
  • Aguilera, Eduardo
  • Guardia, Guillermo

Abstract

Increasing drought severity and evaporative demand in Mediterranean areas makes it necessary to implement irrigation systems with high water and nutrient supply efficiency. The combined management of drip irrigation burial depth and different nitrogen (N) sources, thus far unexplored, predicting these effects using proximal and spectral vegetation indices. A 2-year field experiment was conducted comparing maize yield and N uptake from four N fertilization treatments: ammonium sulfate (AS), AS with the nitrification inhibitor DMPP (AS+INH), calcium nitrate (CN) and a control without N fertilization combined with surface or subsurface (30 cm depth) drip fertigation. Multispectral data were collected to calculate various vegetation indices, while the chlorophyll content was measured with a soil plant analysis development (SPAD) sensor in the second year. Subsurface drip and AS+INH increased maize grain yields compared to surface drip and AS-only (by 12 % and 18 %, respectively, P < 0.05). However, this was observed only in the second season, as were increases in grain N content. The results show that the use of CN performed better in surface drip, while the use of NH4+-N-based fertilizers were recommended for subsurface irrigation. Regarding the spectral data, at the flowering-milky kernel and dent kernel phenological stages Normalized Difference Red Edge (NDRE) and the canopy chlorophyll content index (CCCI) were the two vegetation indices that best estimated agronomical parameters and were able to discriminate the phenological differences between irrigation systems. This study highlights the potential for (i) predicting yield and N uptake using proximal and multispectral sensors in drip-fertigated maize and (ii) optimizing crop performance by combining drip burial depth and N source (DMPP combined with subsurface irrigation), with relevant implications for climate change adaptation (i.e., potential improvements in crop phenology and water saving).

Suggested Citation

  • Monistrol, Alba & Vallejo, Antonio & García-Gutiérrez, Sandra & Hermoso-Peralo, Roberto & Montoya, Mónica & Atencia-Payares, Luz K. & Aguilera, Eduardo & Guardia, Guillermo, 2024. "Interaction between burial depth and N source in drip-fertigated maize: Agronomic performance and correlation with spectral indices," Agricultural Water Management, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002865
    DOI: 10.1016/j.agwat.2024.108951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Jin Guo & Lijian Zheng & Juanjuan Ma & Xufeng Li & Ruixia Chen, 2023. "Meta-Analysis of the Effect of Subsurface Irrigation on Crop Yield and Water Productivity," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    3. T. Spitkó & Z. Nagy & Z.T. Zsubori & C. Szőke & T. Berzy & J. Pintér & C.L. Marton, 2016. "Connection between normalized difference vegetation index and yield in maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(7), pages 293-298.
    4. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    5. Magali J. López-Calderón & Juan Estrada-Ávalos & Víctor M. Rodríguez-Moreno & Jorge E. Mauricio-Ruvalcaba & Aldo R. Martínez-Sifuentes & Gerardo Delgado-Ramírez & Enrique Miguel-Valle, 2020. "Estimation of Total Nitrogen Content in Forage Maize ( Zea mays L.) Using Spectral Indices: Analysis by Random Forest," Agriculture, MDPI, vol. 10(10), pages 1-15, October.
    6. Fabrício Lopes Macedo & Humberto Nóbrega & José G. R. de Freitas & Carla Ragonezi & Lino Pinto & Joana Rosa & Miguel A. A. Pinheiro de Carvalho, 2023. "Estimation of Productivity and Above-Ground Biomass for Corn ( Zea mays ) via Vegetation Indices in Madeira Island," Agriculture, MDPI, vol. 13(6), pages 1-14, May.
    7. Zhang, Haowen & Liang, Qing & Peng, Zhengping & Zhao, Yi & Tan, Yuechen & Zhang, Xin & Bol, Roland, 2023. "Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system," Agricultural Water Management, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Wu & Xuefang Feng & Xuemei Liu & Di Wu & Songmei Zai & Linbao Liu, 2024. "Effects of Burial Furrow Parameters on Soil Water Movement under Subsurface Stalk Composite Pipe Irrigation," Agriculture, MDPI, vol. 14(2), pages 1-17, February.
    2. Rongcai Tian & Bin Zou & Shenxin Li & Li Dai & Bo Zhang & Yulong Wang & Hao Tu & Jie Zhang & Lunwen Zou, 2025. "A Model Combining Sensitive Vegetation Indices and Fractional-Order Differential Characteristic Bands for SPAD Value Estimation in Cd-Contaminated Rice Leaves," Agriculture, MDPI, vol. 15(3), pages 1-20, January.
    3. Zhang, Xin & Liu, Yang & Zhang, Ziye & Liang, Qing & Wang, Guiyan, 2024. "Soil moisture influences wheat yield by affecting root growth and the composition of microbial communities under drip fertigation," Agricultural Water Management, Elsevier, vol. 305(C).
    4. Jonathan O. Hernandez, 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades," Land, MDPI, vol. 11(11), pages 1-18, November.
    5. Le Duc Anh & Ho Huu Loc & Kim N. Irvine & Tran Thanh & Luong Quang Tuong, 2021. "The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7652-7669, May.
    6. Zappa, Luca & Dari, Jacopo & Modanesi, Sara & Quast, Raphael & Brocca, Luca & De Lannoy, Gabrielle & Massari, Christian & Quintana-Seguí, Pere & Barella-Ortiz, Anais & Dorigo, Wouter, 2024. "Benefits and pitfalls of irrigation timing and water amounts derived from satellite soil moisture," Agricultural Water Management, Elsevier, vol. 295(C).
    7. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Hrozencik, R. Aaron, 2018. "Energy, Food, and Water; Electricity Cooperative Pricing and Groundwater Irrigation Decisions," 2018 Annual Meeting, August 5-7, Washington, D.C. 274322, Agricultural and Applied Economics Association.
    9. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    10. José Gescilam S. M. Uchôa & Paulo Tarso S. Oliveira & André S. Ballarin & Antônio A. Meira Neto & Didier Gastmans & Scott Jasechko & Ying Fan & Edson C. Wendland, 2024. "Widespread potential for streamflow leakage across Brazil," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    12. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    13. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Anna Boser & Kelly Caylor & Ashley Larsen & Madeleine Pascolini-Campbell & John T. Reager & Tamma Carleton, 2024. "Field-scale crop water consumption estimates reveal potential water savings in California agriculture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Sears, Louis S. & Lawell, C.Y. Cynthia Lin & Torres, Gerald & Walter, M. Todd, 2022. "Moment-based Markov Equilibrium Estimation of High-Dimension Dynamic Games: An Application to Groundwater Management in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322187, Agricultural and Applied Economics Association.
    16. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    17. Namdarian, Dorsa & Boroomand-Nasab, Saeid & Gorooei, Aram & Gaiser, Thomas & Solymani, Asma & Naseri, Abdali & dos Santos Vianna, Murilo, 2024. "Determination of the optimum depth for subsurface dripping irrigation of sugarcane under crop residue management," Agricultural Water Management, Elsevier, vol. 303(C).
    18. Simon A. Schroeter & Alice May Orme & Katharina Lehmann & Robert Lehmann & Narendrakumar M. Chaudhari & Kirsten Küsel & He Wang & Anke Hildebrandt & Kai Uwe Totsche & Susan Trumbore & Gerd Gleixner, 2025. "Hydroclimatic extremes threaten groundwater quality and stability," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    19. Kishore, Prabhat & Singh, Dharm Raj & Srivastava, Shivendra & Kumar, Pramod & Jha, Girish Kumar, 2021. "Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India," 2021 Conference, August 17-31, 2021, Virtual 315198, International Association of Agricultural Economists.
    20. Xin Deng & Lingzhi Zhang & Rong Xu & Miao Zeng & Qiang He & Dingde Xu & Yanbin Qi, 2022. "Do Cooperatives Affect Groundwater Protection? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-14, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.