IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v298y2024ics037837742400194x.html
   My bibliography  Save this article

Precision forecasting of fertilizer components’ concentrations in mixed variable-rate fertigation through machine learning

Author

Listed:
  • Wu, Menglong
  • Xiong, Jiajie
  • Li, Ruoyu
  • Dong, Aihong
  • Lv, Chang
  • Sun, Dan
  • Abdelghany, Ahmed Elsayed
  • Zhang, Qian
  • Wang, Yaqiong
  • Siddique, Kadambot H.M.
  • Niu, Wenquan

Abstract

Accurate monitoring of fertilizer concentration and variable irrigation components is crucial for achieving precision irrigation through variable-rate fertigation. However, technological and cost constraints pose challenges in effectively managing mixed variable-rate fertigation. This study addresses these challenges by integrating machine learning (ML) with easily monitored physical parameters, such as electrical conductivity (EC), pH, and temperature, to predict fertilizer solution components and concentrations in mixed variable-rate fertigation. Cubic spline interpolation (CSI) was used to enhance the training dataset. Six ML algorithms—Multivariate Linear Regression (MLR), Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Extremely Randomized Trees (ETs), Multilayer Perceptron (MLP), and Extreme Gradient Boosting (XGB)—were used to develop prediction models, with their performance evaluated using the coefficient of determination (R2), root mean square error (RMSE), and Akaike information criterion (AIC). The Extended Fourier Amplitude Sensitivity Test (EFAST) assessed the sensitivity of the ML models to physical parameters. All of the ML models, except for MLR, particularly SVM, demonstrated superior performance in predicting fertilizer solution components’ concentrations, with R2 values between 0.989 and 0.997 and RMSE values between 0.089 and 0.210. The CSI significantly enhanced model performance, resulting in larger R2 values and smaller RMSE values. The AIC results and sensitivity analysis confirmed the exceptional performance of SVM, emphasizing its suitability for predicting fertilizer components using easily measured physical parameters. The developed ML models offer valuable insights for decision-makers managing irrigation and fertilization in mixed variable-rate fertigation.

Suggested Citation

  • Wu, Menglong & Xiong, Jiajie & Li, Ruoyu & Dong, Aihong & Lv, Chang & Sun, Dan & Abdelghany, Ahmed Elsayed & Zhang, Qian & Wang, Yaqiong & Siddique, Kadambot H.M. & Niu, Wenquan, 2024. "Precision forecasting of fertilizer components’ concentrations in mixed variable-rate fertigation through machine learning," Agricultural Water Management, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s037837742400194x
    DOI: 10.1016/j.agwat.2024.108859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400194X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:298:y:2024:i:c:s037837742400194x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.