IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420302705.html
   My bibliography  Save this article

Maize Crop Coefficients under Variable and Fixed (Uniform) Rate Irrigation and Conventional and Variable Rate Fertilizer Management in Three Soil Types

Author

Listed:
  • Irmak, Suat
  • Sharma, Vasudha
  • Haghverdi, Amir
  • Jhala, Amit
  • Payero, José O.
  • Drudik, Matthew

Abstract

Maize (Zea mays L.) evapotranspiration crop coefficients (Kc) that are needed to estimate crop evapotranspiration (ETc) using the two-step approach for variable rate irrigation and nitrogen management under different soil types have not been investigated or quantified. In this research, alfalfa- and grass-reference crop coefficients (Kcr and Kco) curves were developed for fixed rate or uniform rate fertigation (FRF), variable rate fertigation (VRF) and pre-plant nitrogen (PP) management under fixed rate or uniform rate irrigation (FRI) and variable rate irrigation (VRI) for three soil types [Crete silt loam (S1), Hastings silty clay loam (2) and Hastings silt loam (S3)] in 2015, 2016 and 2017 growing seasons. Irrigation and nitrogen management strategies, as well as soil type, all influenced the Kcr and Kco values, which exhibited inter-annual variation. On average, greater variation in Kc curves between FRF, VRF and PP nitrogen treatment were observed under VRI treatments as compared with FRI. Results showed that Kc values are more dependent on the amount rather than the timing of the nitrogen application. In all three seasons, higher Kc values were observed in the FRI treatment than VRI with Kcr, ranging from 0.07 to 1.30 in FRI and 0.07 to 1.20 in VRI. Kc curves also differed between nitrogen treatments and the difference was more prominent in the VRI treatments than in the FRI in all years. In general, maximum Kc was observed in PP nitrogen treatment, followed by FRF and VRF. On a monthly average basis, maximum Kc values were observed in July and August in all soil types and minimum Kc values were observed in June. When soil types are considered, overall, the maximum Kcr value was observed in FRI-PP treatment in S1 (1.02), FRI-VRF treatment in S2 (1.06) and FRI-VRF treatment in S3 (1.02). The Kcr and Kco equations as a function of growing degree days were developed and monthly average Kcr and Kco values were tabulated for practical applications. To the best of the authors’ knowledge, this research is the first that investigated and quantified the impact of VRI and VRF strategies under FRF, VRF and PP fertilizer management strategies on maize Kc values. The Kcr and Kco values quantified in this research can aid irrigators, state agencies and other water management and agricultural professionals for more accurate crop water use determinations under different irrigation and nitrogen management strategies and different soil types.

Suggested Citation

  • Irmak, Suat & Sharma, Vasudha & Haghverdi, Amir & Jhala, Amit & Payero, José O. & Drudik, Matthew, 2021. "Maize Crop Coefficients under Variable and Fixed (Uniform) Rate Irrigation and Conventional and Variable Rate Fertilizer Management in Three Soil Types," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420302705
    DOI: 10.1016/j.agwat.2020.106489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420302705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jiatun & Cai, Huanjie & Wang, Xiaoyun & Ma, Chenguang & Lu, Yajun & Ding, Yibo & Wang, Xiaowen & Chen, Hui & Wang, Yunfei & Saddique, Qaisar, 2020. "Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    3. Eros Borsato & Marco Martello & Francesco Marinello & Lucia Bortolini, 2019. "Environmental and Economic Sustainability Assessment for Two Different Sprinkler and A Drip Irrigation Systems: A Case Study on Maize Cropping," Agriculture, MDPI, vol. 9(9), pages 1-15, August.
    4. Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2019. "Maximizing water productivity of winter wheat by managing zones of variable rate irrigation at different deficit levels," Agricultural Water Management, Elsevier, vol. 216(C), pages 153-163.
    5. Piccinni, Giovanni & Ko, Jonghan & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum," Agricultural Water Management, Elsevier, vol. 96(12), pages 1698-1704, December.
    6. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    7. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    8. Ko, Jonghan & Piccinni, Giovanni & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat," Agricultural Water Management, Elsevier, vol. 96(12), pages 1691-1697, December.
    9. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    2. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    4. Irmak, Suat & Kukal, Meetpal S., 2019. "Disk-till vs. no-till maize grass- and alfalfa-reference single (average) and basal (dual) crop coefficients," Agricultural Water Management, Elsevier, vol. 226(C).
    5. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    7. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
    8. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    9. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    10. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    11. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    12. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    15. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    17. Qin, Shujing & Li, Sien & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Ding, Risheng & Wang, Yahui & Guo, Hui, 2019. "Transpiration of female and male parents of seed maize in northwest China," Agricultural Water Management, Elsevier, vol. 213(C), pages 397-409.
    18. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    19. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    20. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420302705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.