IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp153-163.html
   My bibliography  Save this article

Maximizing water productivity of winter wheat by managing zones of variable rate irrigation at different deficit levels

Author

Listed:
  • Li, Xiumei
  • Zhao, Weixia
  • Li, Jiusheng
  • Li, Yanfeng

Abstract

To determine the specific application rate for each management zone of a variable rate irrigation system, the yield and water use efficiency (WUE) of winter wheat were evaluated during two growing seasons at different deficit levels in the alluvial flood plain of the North China Plain. One 1.64-ha quadrant irrigated by a variable rate center pivot system was delineated into four management zones with available soil water holding capacity, and varied soil profiles were detected in these zones. Each zone was divided into several subzones to be irrigated at different deficit levels. In the 2016 season, each subzone was managed individually with irrigation trigger points of 55%, 65%, 75%, and 80% of field capacity along with a rain-fed treatment. In the 2017 season, all subzones were irrigated simultaneously with 0%, 33%, 67%, 100%, and 120% of the base application depth. For the two-season study, the rain-fed treatment produced significantly lower yield and WUE than the irrigated treatments, and both the maximum yield and the maximum WUE were obtained in zone 2, where a more uniform soil profile was detected. A linear crop water production function was determined for zones 1 and 3 in the 2017 season, while a quadratic equation fit the crop water production function well for other zones in the two seasons. The relationship between WUE and crop water use in the three zones can be represented by a curvilinear equation for both seasons. Taking the optimal application rate of maximizing WUE in zone 1 as a basis, 89% and 94% of the rate in zone 1 was recommended for zones 2 and 3, respectively, to achieve the maximum WUE in the entire field. Our results also suggested that the existing layered-textural soil profile can greatly influence crop productivity and should therefore be considered in mapping irrigation prescriptions.

Suggested Citation

  • Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2019. "Maximizing water productivity of winter wheat by managing zones of variable rate irrigation at different deficit levels," Agricultural Water Management, Elsevier, vol. 216(C), pages 153-163.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:153-163
    DOI: 10.1016/j.agwat.2019.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418314860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O'Shaughnessy, S.A. & Evett, S.R., 2010. "Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton," Agricultural Water Management, Elsevier, vol. 97(9), pages 1310-1316, September.
    2. O’Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D., 2015. "Dynamic prescription maps for site-specific variable rate irrigation of cotton," Agricultural Water Management, Elsevier, vol. 159(C), pages 123-138.
    3. Rajput, G. S. & Singh, J., 1986. "Water production functions for wheat under different environmental conditions," Agricultural Water Management, Elsevier, vol. 11(3-4), pages 319-332, September.
    4. Tolk, Judy A. & Howell, Terry A., 2003. "Water use efficiencies of grain sorghum grown in three USA southern Great Plains soils," Agricultural Water Management, Elsevier, vol. 59(2), pages 97-111, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2021. "Effects of irrigation strategies and soil properties on the characteristics of deep percolation and crop water requirements for a variable rate irrigation system," Agricultural Water Management, Elsevier, vol. 257(C).
    2. Chen, Shichao & Parsons, David & Du, Taisheng & Kumar, Uttam & Wang, Sufen, 2021. "Simulation of yield and water balance using WHCNS and APSIM combined with geostatistics across a heterogeneous field," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2021. "Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    4. Li, Maona & Wang, Yunling & Guo, Hui & Ding, Feng & Yan, Haijun, 2023. "Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Irmak, Suat & Sharma, Vasudha & Haghverdi, Amir & Jhala, Amit & Payero, José O. & Drudik, Matthew, 2021. "Maize Crop Coefficients under Variable and Fixed (Uniform) Rate Irrigation and Conventional and Variable Rate Fertilizer Management in Three Soil Types," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Chen, Shichao & Du, Taisheng & Wang, Sufen & Parsons, David & Wu, Di & Guo, Xiuwei & Li, Donghao, 2021. "Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China," Agricultural Water Management, Elsevier, vol. 244(C).
    7. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Souza, Silas Alves & Rodrigues, Lineu Neiva, 2022. "Increased profitability and energy savings potential with the use of precision irrigation," Agricultural Water Management, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Yubing & Himanshu, Sushil K. & Ale, Srinivasulu & DeLaune, Paul B. & Zhang, Tian & Park, Seong C. & Colaizzi, Paul D. & Evett, Steven R. & Baumhardt, R. Louis, 2022. "The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
    3. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Marek, Gary & Gowda, Prasanna & Marek, Thomas & Auvermann, Brent & Evett, Steven & Colaizzi, Paul & Brauer, David, 2016. "Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters," Agricultural Water Management, Elsevier, vol. 169(C), pages 115-128.
    5. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    6. Michaela ŠKEŘÍKOVÁ & Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Michael HOFBAUER, 2018. "Water demands and biomass production of sorghum and maize plants in areas with insufficient precipitation in Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 367-378.
    7. O'Shaughnessy, S.A. & Evett, S.R. & Colaizzi, P.D. & Howell, T.A., 2011. "Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton," Agricultural Water Management, Elsevier, vol. 98(10), pages 1523-1535, August.
    8. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Pascual-Seva, N. & San Bautista, A. & López-Galarza, S. & Maroto, J.V. & Pascual, B., 2016. "Response of drip-irrigated chufa (Cyperus esculentus L. var. sativus Boeck.) to different planting configurations: Yield and irrigation water-use efficiency," Agricultural Water Management, Elsevier, vol. 170(C), pages 140-147.
    10. Pascual-Seva, Núria & San Bautista, Alberto & López-Galarza, Salvador & Maroto, José Vicente & Pascual, Bernardo, 2018. "Influence of different drip irrigation strategies on irrigation water use efficiency on chufa (Cyperus esculentus L. var. sativus Boeck.) crop," Agricultural Water Management, Elsevier, vol. 208(C), pages 406-413.
    11. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    12. Yasarer, Lindsey M.W. & Sinnathamby, Sumathy & Sturm, Belinda S.M., 2016. "Impacts of biofuel-based land-use change on water quality and sustainability in a Kansas watershed," Agricultural Water Management, Elsevier, vol. 175(C), pages 4-14.
    13. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Garibay, Victoria M. & Kothari, Kritika & Ale, Srinivasulu & Gitz, Dennis C. & Morgan, Gaylon D. & Munster, Clyde L., 2019. "Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    16. Kothari, Kritika & Ale, Srinivasulu & Bordovsky, James P. & Thorp, Kelly R. & Porter, Dana O. & Munster, Clyde L., 2019. "Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes," Agricultural Systems, Elsevier, vol. 170(C), pages 49-62.
    17. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    18. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    19. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    20. Ray, Lala I.P. & Swetha, K. & Singh, A.K. & Singh, N.J., 2023. "Water productivity of major pulses – A review," Agricultural Water Management, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:153-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.