IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423004067.html
   My bibliography  Save this article

Inter-comparison of the Penman-Monteith type model in modeling the evapotranspiration and its components in an orchard plantation of Southwest China

Author

Listed:
  • Cui, Ningbo
  • He, Ziling
  • Jiang, Shouzheng
  • Wang, Mingjun
  • Yu, Xiuyun
  • Zhao, Lu
  • Qiu, Rangjian
  • Gong, Daozhi
  • Wang, Yaosheng
  • Feng, Yu

Abstract

Crop evapotranspiration (ET) along with its components (canopy transpiration (T) and soil evaporation (E)) estimates are crucial for agroecosystem hydrological process research and developing agricultural water-saving strategies. An inter-comparison of the Penman-Monteith type model, including Penman-Monteith (PM), Shuttleworth-Wallace (S-W), Two-Patch (T-P) and topography- and vegetation-based surface energy partitioning algorithm (TVET), Clumping (CL) and developed Two patch-Two layer (T-T) model was conducted to estimate ET and its components in a kiwifruit orchard. Results showed that all models can well capture the pattern of eddy covariance-based hourly ET (ETEC), with a slope of 0.82–1.10, R2 of 0.78–0.83, and RMSE of 0.039–0.049 mm 0.5 h–1, and yield relatively reliable estimates validated by sap flow-based hourly T, with a slope of 0.93–1.16, R2 of 0.72–0.79, and RMSE 0.017–0.026 mm 0.5 h–1. All the P-M type models agreed well with the daily ETEC, with a slope of 0.88–1.21, R2 of 0.82–0.86, and RMSE of 0.55–0.88 mm d–1, respectively. S-W overestimated actual ET due to overestimation in both T and E, T-P and TVET models overestimated T but underestimated actual E as they ignored the soil contribution under the canopy. T-T model outperformed other models in daily ET, T, and E estimates, with R2 of 0.86, 0.73 and 0.73, and RMSE of 0.56, 0.39 and 0.46 mm d–1, respectively. The output ET and T of the different P-M type models were most sensitive to canopy resistance (rsc), while E is most sensitive to aerodynamic resistance between substrate and crop canopy. Net radiation was the most crucial meteorological factor affecting ET, T and E, as it directly participated in the energy balance calculation. The output T was sensitive to air temperature since it affected rsc, while E was relatively sensitive to soil water content since it greatly changed soil surface resistance.

Suggested Citation

  • Cui, Ningbo & He, Ziling & Jiang, Shouzheng & Wang, Mingjun & Yu, Xiuyun & Zhao, Lu & Qiu, Rangjian & Gong, Daozhi & Wang, Yaosheng & Feng, Yu, 2023. "Inter-comparison of the Penman-Monteith type model in modeling the evapotranspiration and its components in an orchard plantation of Southwest China," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004067
    DOI: 10.1016/j.agwat.2023.108541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.