IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421002870.html
   My bibliography  Save this article

Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth

Author

Listed:
  • Zhang, Cong
  • Huang, Xian
  • Zhang, Xingwei
  • Wan, Li
  • Wang, Zhenhong

Abstract

The control of soil nutrient loss to lighten non-point source pollution to water body and improve soil fertility is a global problem. Biochar application to soil is widely considered as an effective method to improve soil fertility and reduce nutrient loss. However, the effect of biochar application to barren karst yellow soil in global karst regions on the loss of nitrogen (N) and phosphorous (P) and the growth of oil peony (an important woody oil crop) remains unclear. We conducted the indoor leaching experiments, in-site observation of the N and P loss with surface runoff under three types of rains and the comparative experiment of oil peony growth when the different amount of biochar was applied to karst yellow soil. The results indicated that soil pH, total nitrogen (TN), total phosphorous (TP), available N and available P contents in the soil increased with an increase of biochar application under indoor simulation but the loss of leaching solution decreased. 2 kg/m2 biochar application caused the least loss of TP, TN, nitrate nitrogen (NN) and ammonia nitrogen (AN) with the leaching solution compared with 0, 4 and 6 kg/m2 application. The rapid and slow attenuation of P and N concentrations, respectively, were observed in karst yellow soil with biochar application. The N/P change in leaching solution showed a parabolic form. Under natural rainfall, 4 kg/m2 biochar application had the best effect on a reduction of TP, TN and AN loss in surface runoff. Rainstorm caused AN and TP large loss but rainstorm, heavy and moderate rains all easily caused NN large loss. 4 kg/m2 biochar application had the best effect on the growth of plant height and base diameter, leaf SPAD and N and P content in organs in the fertilized area but 6 kg/m2 in the unfertilized area. Biochar application effectively improved the fertility of karst yellow soil, reduced the loss of N and P with vertical leaching and surface runoff, and promoted the growth of oil peony. This study provides new knowledge for biochar application.

Suggested Citation

  • Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002870
    DOI: 10.1016/j.agwat.2021.107022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akhtar, Saqib Saleem & Andersen, Mathias Neumann & Liu, Fulai, 2015. "Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress," Agricultural Water Management, Elsevier, vol. 158(C), pages 61-68.
    2. Songping Luo & Binghui He & Dandan Song & Tianyang Li & Yaopeng Wu & Lei Yang, 2020. "Response of Bacterial Community Structure to Different Biochar Addition Dosages in Karst Yellow Soil Planted with Ryegrass and Daylily," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    3. Faloye, O.T. & Alatise, M.O. & Ajayi, A.E. & Ewulo, B.S., 2019. "Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation," Agricultural Water Management, Elsevier, vol. 217(C), pages 165-178.
    4. Zhang, Chuan & Li, Xinyu & Yan, Haofang & Ullah, Ikram & Zuo, Zhiyu & Li, Lanlan & Yu, Jianjun, 2020. "Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Guo, Lili & Bornø, Marie Louise & Niu, Wenquan & Liu, Fulai, 2021. "Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baishu Kong & Qicong Wu & Yongqiang Li & Taochuan Zhu & Yufei Ming & Chuanfu Li & Chuanrong Li & Fenghua Wang & Shuying Jiao & Lianhui Shi & Zhi Dong, 2022. "The Application of Humic Acid Urea Improves Nitrogen Use Efficiency and Crop Yield by Reducing the Nitrogen Loss Compared with Urea," Agriculture, MDPI, vol. 12(12), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    2. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Anna Kritikaki & Styliani Voutsadaki & Maria L. Saru & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    4. Marta Wyzińska & Adam Kleofas Berbeć & Jerzy Grabiński, 2023. "Impact of Biochar Dose and Origin on Winter Wheat Grain Quality and Quantity," Agriculture, MDPI, vol. 14(1), pages 1-15, December.
    5. Zenghui Sun & Ya Hu & Lei Shi & Gang Li & Zhe Pang & Siqi Liu & Yamiao Chen & Baobao Jia, 2022. "Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(6), pages 272-289.
    6. María Alcívar & Andrés Zurita-Silva & Marco Sandoval & Cristina Muñoz & Mauricio Schoebitz, 2018. "Reclamation of Saline–Sodic Soils with Combined Amendments: Impact on Quinoa Performance and Biological Soil Quality," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    7. Younes Gaga & Imane Mehdaoui & Mohammed Kara & Amine Assouguem & Abdulrahman Al-Hashimi & Mohamed Ragab AbdelGawwad & Mohamed S. Elshikh & El Mokhtar Saoudi Hassani & Mona S. Alwahibi & Jamila Bahhou , 2023. "Elaboration and Characterization of a Biochar from Wastewater Sludge and Olive Mill Wastewater," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    8. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Mukesh Kumar Soothar & Abdoul Kader Mounkaila Hamani & Mahendar Kumar Sootahar & Jingsheng Sun & Gao Yang & Saleem Maseeh Bhatti & Adama Traore, 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize ( Zea mays L.) Seedlings under Salinity Stress," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    10. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    11. Sokkeang Be & Soydoa Vinitnantharat & Anawat Pinisakul, 2021. "Effect of Mangrove Biochar Residue Amended Shrimp Pond Sediment on Nitrogen Adsorption and Leaching," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    12. Mannan, M.A. & Mia, Shamim & Halder, Eshita & Dijkstra, Feike A., 2021. "Biochar application rate does not improve plant water availability in soybean under drought stress," Agricultural Water Management, Elsevier, vol. 253(C).
    13. Li, Yi & Yao, Ning & Liang, Jiaping & Wang, Xiaofang & Niu, Ben & Jia, Yonglin & Jiang, Fuchang & Yu, Qiang & Liu, De Li & Feng, Hao & He, Hailong & Yang, Guang & Pulatov, Alim, 2023. "Rational biochar application rate for cotton nutrient content, growth, yields, productivity, and economic benefits under film-mulched trickle irrigation," Agricultural Water Management, Elsevier, vol. 276(C).
    14. Masinde, Peter & Wahome, Bernard M., 2022. "The effect of biochar from rice husks on evapotranspiration, vegetative growth and fruit yield of greenhouse tomato cultivar anna F1 grown in two soil types," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(05).
    15. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    16. Maru Ali & Osumanu Haruna Ahmed & Mohamadu Boyie Jalloh & Walter Charles Primus & Adiza Alhassan Musah & Ji Feng Ng, 2023. "Co-Composted Chicken Litter Biochar Increases Soil Nutrient Availability and Yield of Oryza sativa L," Land, MDPI, vol. 12(1), pages 1-20, January.
    17. Peijun Wang & Qi Liu & Shenglong Fan & Jing Wang & Shouguo Mu & Chunbo Zhu, 2023. "Combined Application of Desulfurization Gypsum and Biochar for Improving Saline-Alkali Soils: A Strategy to Improve Newly Reclaimed Cropland in Coastal Mudflats," Land, MDPI, vol. 12(9), pages 1-22, September.
    18. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng & Lu, Junsheng, 2022. "Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    19. Li, Yi & Yao, Ning & Liang, Jiaping & Wang, Xiaofang & Jia, Yonglin & Jiang, Fuchang & Liu, De Li & Hu, Wei & He, Hailong & Javed, Tehseen, 2022. "Optimum biochar application rate for peak economic benefit of sugar beet in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.