IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424001215.html
   My bibliography  Save this article

Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China

Author

Listed:
  • Zhang, Pengyan
  • Liu, Jiangzhou
  • Wang, Maodong
  • Zhang, Haocheng
  • Yang, Nan
  • Ma, Jing
  • Cai, Huanjie

Abstract

Excessive water and nitrogen inputs in agricultural production can result in resource wastage and environmental pollution. This makes it imperative to identify effective farmland management strategies to ensure sustainable agriculture development, and it remains to be explored whether biochar can be an effective solution. In this study, a 2-year (2021 and 2022) field experiment was conducted with two irrigation levels, W100 (ET) and W80 (0.8 ET), and three nitrogen fertilizer levels, NH (270 kg ha−1), NM (180 kg ha−1), and NL (90 kg ha−1), in full combination with biochar (30 t ha−1). The NM and N0 treatments without biochar at both irrigation levels were set as controls. The results of the study showed that there was no significant difference in maize yield between the high and medium N treatments. Further, maximum water productivity (WP), nitrogen agronomic efficiency (NAE), and nitrogen recovery efficiency (NRE) were obtained in NM treatments when water and nitrogen were kept consistent. Deficit irrigation was effective in reducing water consumption and increased WP by 15.54% and 11.06% in 2021 and 2022, respectively. Biochar application increased WP, nitrogen use efficiencies, and significantly increased the yield by 7.02% and 6.46% in 2021 and 2022, respectively. Therefore, the application of biochar can be an effective measure to promote crop growth and resource use. Based on the results of this experiment, an irrigation level of 0.8 ET in combination with NM and biochar application is recommended to ensure the sustainability of agricultural production.

Suggested Citation

  • Zhang, Pengyan & Liu, Jiangzhou & Wang, Maodong & Zhang, Haocheng & Yang, Nan & Ma, Jing & Cai, Huanjie, 2024. "Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001215
    DOI: 10.1016/j.agwat.2024.108786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.