IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v290y2023ics0378377423004705.html
   My bibliography  Save this article

The joint application of biochar and nitrogen enhances fruit yield, quality and water-nitrogen productivity of water-stressed greenhouse tomato under drip fertigation

Author

Listed:
  • Abdelghany, Ahmed Elsayed
  • Dou, Zhiyao
  • Alashram, Mohamed G.
  • Eltohamy, Kamel Mohamed
  • Elrys, Ahmed S.
  • Liu, Xiaoqiang
  • Wu, You
  • Cheng, Minghui
  • Fan, Junliang
  • Zhang, Fucang

Abstract

The biochar application has been reported to have a positive effect on crop yield and nutrient utilization. However, the effects of the joint application of biochar and nitrogen (N) on soil physical properties, fruit yield, quality, crop water productivity (WP) and partial factor productivity of nitrogen (PFPN) of water-stressed greenhouse tomato under drip fertigation remain poorly understood. In this study, a two-season experiment was conducted on greenhouse tomato in autumn 2021 and spring 2022, involving two biochar application rates (0 and 30 t ha–1 only in the first season before sowing), two N fertilization rates (175 and 250 kg N ha–1), and three irrigation levels (100%, 75%, and 50% of crop evapotranspiration). The results showed that biochar application significantly decreased soil bulk density by 7–13%, but significantly increased soil porosity by 5.5%− 10% and fruit yield by 43.2–73.8% compared with the non-biochar treatment. The biochar application significantly affected the total soluble solids (TSS), soluble sugar (SS), and vitamin C of tomato fruits. The interaction of biochar application and N fertilization increased PFPN and WP by 67.4% and 76.3% in autumn 2021, and by 38.1% and 51.8% in spring 2022, respectively. Biochar rate and irrigation level had significant effects on TSS and SS contents in both seasons, but N rate significantly affected TSS in autumn 2021 only and SS in both seasons. The interaction of biochar application, N rate and irrigation level had significant effects on fruit yield. The effects of biochar rate, N rate, and irrigation level on PFPN were significant in both growing seasons. The joint application of biochar and nitrogen significantly enhanced fruit yield, quality and water-nitrogen productivity of water-stressed greenhouse tomato. The Principal Component Analysis (PCA) revealed that PC1 accounted for 47.7% and 48%of the variation in autumn 2021 and spring 2022, while PC2 accounted for 14.6% and 15.6% in autumn 2021 and spring 2022, respectively. This study underscores the significance of biochar application in drip-fertigated greenhouse tomato cultivation and highlights its sustained positive effects in the next growing season.

Suggested Citation

  • Abdelghany, Ahmed Elsayed & Dou, Zhiyao & Alashram, Mohamed G. & Eltohamy, Kamel Mohamed & Elrys, Ahmed S. & Liu, Xiaoqiang & Wu, You & Cheng, Minghui & Fan, Junliang & Zhang, Fucang, 2023. "The joint application of biochar and nitrogen enhances fruit yield, quality and water-nitrogen productivity of water-stressed greenhouse tomato under drip fertigation," Agricultural Water Management, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004705
    DOI: 10.1016/j.agwat.2023.108605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.