IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v183y2017icp16-25.html
   My bibliography  Save this article

Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses

Author

Listed:
  • Pawlowski, A.
  • Sánchez-Molina, J.A.
  • Guzmán, J.L.
  • Rodríguez, F.
  • Dormido, S.

Abstract

This work presents a study and evaluation of an event-based predictive control system for a greenhouse irrigation process. The control system objective is to maintain the desired substrate humidity level, keeping the water usage as low as possible. The event-based control scheme uses a crop transpiration model to determine the volume of water required to compensate for the irrigation system and a water content model to trigger the irrigation system events. First, simulation experiments were performed to analyze the behavior of the designed system and to study the water supply dynamics to the substrate and subsequent drainage and evaporation. Secondly, the proposed event-based controller was evaluated in an experimental greenhouse, located in southeast of Spain, in real operation conditions. The resulting control system is able to adapt the actuation rate to the state of the plant providing the efficient way of water consumption. The obtained results show that the application of proposed event-based approach for the greenhouse irrigation system allows to improve the control performance and to reduce the water usage (about 20% of required water for the same performance obtained for commonly used on/off) being an important issue in intensive agriculture. The improved control performance is obtained due to event-based approach and the inclusion of information about the plant dynamic response for water supply and transpiration effect.

Suggested Citation

  • Pawlowski, A. & Sánchez-Molina, J.A. & Guzmán, J.L. & Rodríguez, F. & Dormido, S., 2017. "Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses," Agricultural Water Management, Elsevier, vol. 183(C), pages 16-25.
  • Handle: RePEc:eee:agiwat:v:183:y:2017:i:c:p:16-25
    DOI: 10.1016/j.agwat.2016.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741630292X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Vosselen, A. & Verplancke, H. & Van Ranst, E., 2005. "Assessing water consumption of banana: traditional versus modelling approach," Agricultural Water Management, Elsevier, vol. 74(3), pages 201-218, June.
    2. Reca, J. & Torrente, C. & López-Luque, R. & Martínez, J., 2016. "Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 1143-1154.
    3. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    4. Shin, Jong Hwa & Park, Jong Seok & Son, Jung Eek, 2014. "Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants," Agricultural Water Management, Elsevier, vol. 135(C), pages 9-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Francis J. Baumont De Oliveira & Scott Ferson & Ronald Dyer, 2021. "A Collaborative Decision Support System Framework for Vertical Farming Business Developments," International Journal of Decision Support System Technology (IJDSST), IGI Global, vol. 13(1), pages 1-33, January.
    3. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    4. Chiara Bersani & Carmelina Ruggiero & Roberto Sacile & Abdellatif Soussi & Enrico Zero, 2022. "Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0," Energies, MDPI, vol. 15(10), pages 1-30, May.
    5. Showkat Ahmad Bhat & Nen-Fu Huang & Imtiyaz Hussain & Farzana Bibi & Uzair Sajjad & Muhammad Sultan & Abdullah Saad Alsubaie & Khaled H. Mahmoud, 2021. "On the Classification of a Greenhouse Environment for a Rose Crop Based on AI-Based Surrogate Models," Sustainability, MDPI, vol. 13(21), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Molina, J.A. & Rodríguez, F. & Guzmán, J.L. & Ramírez-Arias, J.A., 2015. "Water content virtual sensor for tomatoes in coconut coir substrate for irrigation control design," Agricultural Water Management, Elsevier, vol. 151(C), pages 114-125.
    2. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    3. Lidia Roca & Jorge A. Sánchez & Francisco Rodríguez & Javier Bonilla & Alberto De la Calle & Manuel Berenguel, 2016. "Predictive Control Applied to a Solar Desalination Plant Connected to a Greenhouse with Daily Variation of Irrigation Water Demand," Energies, MDPI, vol. 9(3), pages 1-17, March.
    4. Pedro Garcia-Caparros & Juana Isabel Contreras & Rafael Baeza & Maria Luz Segura & Maria Teresa Lao, 2017. "Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    5. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    6. Chang, Jie & Wu, Xu & Liu, Anqin & Wang, Yan & Xu, Bin & Yang, Wu & Meyerson, Laura A. & Gu, Baojing & Peng, Changhui & Ge, Ying, 2011. "Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China," Ecological Economics, Elsevier, vol. 70(4), pages 740-748, February.
    7. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    8. Moreno-Pérez, M. Fátima & Roldán-Cañas, José, 2013. "Assessment of irrigation water management in the Genil-Cabra (Córdoba, Spain) irrigation district using irrigation indicators," Agricultural Water Management, Elsevier, vol. 120(C), pages 98-106.
    9. Martínez-Alvarez, V. & García-Bastida, P.A. & Martin-Gorriz, B. & Soto-García, M., 2014. "Adaptive strategies of on-farm water management under water supply constraints in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 136(C), pages 59-67.
    10. Rahman, Syed Mahbubur & Mori, Akihisa & Rahman, Syed Mustafizur, 2022. "How does climate adaptation co-benefits help scale-up solar-powered irrigation? A case of the Barind Tract, Bangladesh," Renewable Energy, Elsevier, vol. 182(C), pages 1039-1048.
    11. Aldo Barrueto Guzmán & Rodrigo Barraza Vicencio & Jorge Alfredo Ardila-Rey & Eduardo Núñez Ahumada & Arturo González Araya & Gerardo Arancibia Moreno, 2018. "A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile," Energies, MDPI, vol. 11(7), pages 1-18, July.
    12. Mulebeke, Robert & Kironchi, Geoffrey & Tenywa, Moses M., 2015. "Exploiting Cropping Management to Improve Agricultural Water Use Efficiency in the Drylands of Eastern Uganda," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(2).
    13. Carvajal, F. & Agüera, F. & Sánchez-Hermosilla, J., 2014. "Water balance in artificial on-farm agricultural water reservoirs for the irrigation of intensive greenhouse crops," Agricultural Water Management, Elsevier, vol. 131(C), pages 146-155.
    14. Piedra-Muñoz, Laura & Vega-López, Laura L. & Galdeano-Gómez, Emilio & Zepeda-Zepeda, José A., 2018. "Drivers for efficient water use in agriculture: an empirical analysis of family farms in Almería, Spain," MPRA Paper 119885, University Library of Munich, Germany.
    15. Julián Ignacio Monís & Rafael López-Luque & Juan Reca & Juan Martínez, 2020. "Multistage Bounded Evolutionary Algorithm to Optimize the Design of Sustainable Photovoltaic (PV) Pumping Irrigation Systems with Storage," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    16. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & He, Hai & He, Jian & Yin, Hao & Zhang, Yaxin, 2021. "Coupled hydrology-crop growth model incorporating an improved evapotranspiration module," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Galdeano-Gómez, E. & Aznar-Sánchez, J.A. & Pérez-Mesa, J.C. & Piedra-Muñoz, L., 2017. "Exploring Synergies Among Agricultural Sustainability Dimensions: An Empirical Study on Farming System in Almería (Southeast Spain)," Ecological Economics, Elsevier, vol. 140(C), pages 99-109.
    18. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    19. Emilio Galdeano-Gómez & José A. Aznar-Sánchez & Juan C. Pérez-Mesa, 2012. "Sustainability dimensions of agricultural development in Almería (Spain): The experience of 50 years," ERSA conference papers ersa12p256, European Regional Science Association.
    20. Bonachela, Santiago & Fernández, María Dolores & Cabrera-Corral, Francisco Javier & Granados, María Rosa, 2022. "Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:183:y:2017:i:c:p:16-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.