IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v163y2016icp159-168.html
   My bibliography  Save this article

Shallow groundwater dynamics in the Pampas: Climate, landscape and crop choice effects

Author

Listed:
  • Mercau, Jorge L.
  • Nosetto, Marcelo D.
  • Bert, Federico
  • Giménez, Raúl
  • Jobbágy, Esteban G.

Abstract

Depending on its depth from the soil surface, shallow groundwater can represent a valuable water resource to alleviate droughts, or a stress agent that causes waterlogging and flooding in rainfed crops. Groundwater depth varies across space, following landscape topographic features; through time, accompanying climate fluctuations; and may also shift in both dimensions in response to crop choice. We evaluated the contribution of climate, topography and crop choice on the variability of groundwater depth in rainfed systems of western Pampas, throughout a five year period of extreme precipitation fluctuation (2008–2013). Sixteen permanent monitoring wells were installed in four different topographic settings along the smoothly rolling landscape, covering the three phases of a maize–soybean–wheat/soybean rotation, common in the region. Water table dynamics, measured at weekly to monthly intervals, was very similar across landscape positions, with a range of depth from the surface of −0.2 (flood) to 1.8m and 1.8–4.4m in the lowest and highest positions, respectively. At the inter-annual scale, water table fluctuations were predominantly dictated by climate variability with no effect due to the implanted crop. Only at the intra-annual scale, crop choice appeared as a relevant control, with wheat–soybean flattening the spring level rises and summer drops repeatedly found under maize and soybean single crops. Daily meteorological data and remote sensing estimates of live and dead crop cover were used to simulate transpiration demand and soil evaporation. As the balance between precipitation and crop evapotranspiration was positive/negative, watertables raised/dropped 0.21cmmm−1 (n=80, R2 0.32) and 0.22cmmm−1 (n=1092, R2 0.31) at inter and intra-annual scales, respectively. While crop choice may influence water table levels within a growing season, it has only a subtle effect on year to year fluctuation. With the explored annual crop options, farmers in the Pampas could reduce spring flooding risk when sowing double crops but cannot have a substantial effect on the longer term dynamics of the water table.

Suggested Citation

  • Mercau, Jorge L. & Nosetto, Marcelo D. & Bert, Federico & Giménez, Raúl & Jobbágy, Esteban G., 2016. "Shallow groundwater dynamics in the Pampas: Climate, landscape and crop choice effects," Agricultural Water Management, Elsevier, vol. 163(C), pages 159-168.
  • Handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:159-168
    DOI: 10.1016/j.agwat.2015.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florio, E.L. & Mercau, J.L. & Jobbágy, E.G. & Nosetto, M.D., 2014. "Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas," Agricultural Water Management, Elsevier, vol. 146(C), pages 75-83.
    2. Nosetto, M.D. & Acosta, A.M. & Jayawickreme, D.H. & Ballesteros, S.I. & Jackson, R.B. & Jobbágy, E.G., 2013. "Land-use and topography shape soil and groundwater salinity in central Argentina," Agricultural Water Management, Elsevier, vol. 129(C), pages 120-129.
    3. Black, A. L. & Brown, P. L. & Halvorson, A. D. & Siddoway, F. H., 1981. "Dryland cropping strategies for efficient water-use to control saline seeps in the Northern Great Plains, U.S.A," Agricultural Water Management, Elsevier, vol. 4(1-3), pages 295-311, August.
    4. Miller, M. R. & Brown, P. L. & Donovan, J. J. & Bergatino, R. N. & Sonderegger, J. L. & Schmidt, F. A., 1981. "Saline seep development and control in the North American Great Plains - Hydrogeological aspects," Agricultural Water Management, Elsevier, vol. 4(1-3), pages 115-141, August.
    5. Mueller, Lothar & Behrendt, Axel & Schalitz, Gisbert & Schindler, Uwe, 2005. "Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate," Agricultural Water Management, Elsevier, vol. 75(2), pages 117-136, July.
    6. Pannell, David J. & Ewing, Michael A., 2006. "Managing secondary dryland salinity: Options and challenges," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 41-56, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kroes, Joop & van Dam, Jos & Supit, Iwan & de Abelleyra, Diego & Verón, Santiago & de Wit, Allard & Boogaard, Hendrik & Angelini, Marcos & Damiano, Francisco & Groenendijk, Piet & Wesseling, Jan & Vel, 2019. "Agrohydrological analysis of groundwater recharge and land use changes in the Pampas of Argentina," Agricultural Water Management, Elsevier, vol. 213(C), pages 843-857.
    2. García, Guillermo A. & Miralles, Daniel J. & Serrago, Román A. & Alzueta, Ignacio & Huth, Neil & Dreccer, M. Fernanda, 2018. "Warm nights in the Argentine Pampas: Modelling its impact on wheat and barley shows yield reductions," Agricultural Systems, Elsevier, vol. 162(C), pages 259-268.
    3. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zipper, Samuel C. & Soylu, Mehmet Evren & Kucharik, Christopher J. & Loheide II, Steven P., 2017. "Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model," Ecological Modelling, Elsevier, vol. 359(C), pages 201-219.
    2. Reza Esmaeili & Rahim Mohammadian & Hossein Heidari Sharif Abad & Ghorban Noor Mohammadi, 2022. "Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(8), pages 347-357.
    3. Michael Ward & Jared Dent, 2010. "Projected impacts of salinity on dryland property values in South West Australia," Environmental Economics Research Hub Research Reports 1090, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University.
    4. Lee, Lisa Y. & Ancev, Tihomir & Vervoort, Willem, 2012. "Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia," Agricultural Water Management, Elsevier, vol. 109(C), pages 107-116.
    5. Ross Kingwell & Michele John & Michael Robertson, 2008. "A review of a community-based approach to combating land degradation: dryland salinity management in Australia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 899-912, December.
    6. Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    7. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).
    8. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    9. Hongfang Li & Jian Wang & Hu Liu & Zhanmin Wei & Henglu Miao, 2022. "Quantitative Analysis of Temporal and Spatial Variations of Soil Salinization and Groundwater Depth along the Yellow River Saline–Alkali Land," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    10. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Kulasinghe, Tharindu Nuwan & Dharmakeerthi, Randombage Saman, 2022. "Effects of land use type and tank components on soil properties and sustainability of tank cascade system in the Dry Zone of north central Sri Lanka," Agricultural Systems, Elsevier, vol. 201(C).
    12. Crossman, Neville D. & Bryan, Brett A., 2009. "Identifying cost-effective hotspots for restoring natural capital and enhancing landscape multifunctionality," Ecological Economics, Elsevier, vol. 68(3), pages 654-668, January.
    13. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo & Henning Bjornlund, 2016. "The Impact of Water and Soil Salinity on Water Market Trading in the Southern Murray–Darling Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-26, March.
    14. Kristiina Regina & Jatta Sheehy & Merja Myllys, 2015. "Mitigating greenhouse gas fluxes from cultivated organic soils with raised water table," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1529-1544, December.
    15. O'Connell, Mark G. & O'Leary, Garry J. & Incerti, Maurice, 1995. "Potential groundwater recharge from fallowing in north-west Victoria, Australia," Agricultural Water Management, Elsevier, vol. 29(1), pages 37-52, December.
    16. Ali, Riasat & Viney, Neil R. & Hodgson, Geoff & Aryal, Santosh & Dawes, Warrick, 2012. "Modelling the impact of subcatchment and regional scale drainage in the Blackwood Basin, Western Australia," Agricultural Water Management, Elsevier, vol. 115(C), pages 252-266.
    17. Fuat Kaya & Calogero Schillaci & Ali Keshavarzi & Levent Başayiğit, 2022. "Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity in a Western Türkiye Alluvial Plain," Land, MDPI, vol. 11(12), pages 1-21, November.
    18. Matsuo, Naoki & Takahashi, Masakazu & Yamada, Tetsuya & Takahashi, Motoki & Hajika, Makita & Fukami, Koichiro & Tsuchiya, Shinori, 2017. "Effects of water table management and row width on the growth and yield of three soybean cultivars in southwestern Japan," Agricultural Water Management, Elsevier, vol. 192(C), pages 85-97.
    19. Rong, Yao & Dai, Xiaoqin & Wang, Weishu & Wu, Peijin & Huo, Zailin, 2023. "Dependence of evapotranspiration validity on shallow groundwater in arid area-a three years field observation experiment," Agricultural Water Management, Elsevier, vol. 286(C).
    20. David J. Pannell & Anna M. Roberts, 2010. "Australia's National Action Plan for Salinity and Water Quality: a retrospective assessment ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 437-456, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:159-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.