Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation
Author
Abstract
Suggested Citation
DOI: 10.17221/151/2022-PSE
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Florio, E.L. & Mercau, J.L. & Jobbágy, E.G. & Nosetto, M.D., 2014. "Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas," Agricultural Water Management, Elsevier, vol. 146(C), pages 75-83.
- Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- L. Jozefyová & J. Pulkrábek & J. Urban, 2003. "The influence of harvest date and crop treatment on the production of two different sugar beet variety types," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 49(11), pages 492-498.
- Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
- Badr, M.A. & Abou-Hussein, S.D. & El-Tohamy, W.A., 2016. "Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region," Agricultural Water Management, Elsevier, vol. 169(C), pages 90-97.
- Mohammadian, R. & Sadeghian, S.Y. & Rahimian, H. & Moghadam, M., 2008. "Reduced water consumption of dormant-seeded sugar beet in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(5), pages 545-552, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Beata Michalska-Klimczak & Grażyna Mastalerczuk & Zdzisław Wyszyński & Vladimír Pačuta & Marek Rašovský, 2024. "Effect of Sowing Date and Nitrogen Rates on Morphometric Features and Photosynthetic Performance in Sugar Beet," Agriculture, MDPI, vol. 14(12), pages 1-18, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khozaei, Maryam & Kamgar Haghighi, Ali Akbar & Zand Parsa, Shahrokh & Sepaskhah, Ali Reza & Razzaghi, Fatemeh & Yousefabadi, Vali-allah & Emam, Yahya, 2020. "Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities," Agricultural Water Management, Elsevier, vol. 238(C).
- Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
- Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
- Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
- Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
- Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
- Sekyi-Annan, Ephraim & Tischbein, Bernhard & Diekkrüger, Bernd & Khamzina, Asia, 2018. "Performance evaluation of reservoir-based irrigation schemes in the Upper East region of Ghana," Agricultural Water Management, Elsevier, vol. 202(C), pages 134-145.
- Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
- Marcela Taušová & Katarína Čulková & Dušan Kudelas & Ľubomíra Gabániová & Ján Koščo & Ibrahim Mehana, 2022. "Evaluation of Water Resources through Efficiency Index and Water Productivity in EU," Energies, MDPI, vol. 15(23), pages 1-11, December.
- Martínez-Alvarez, V. & García-Bastida, P.A. & Martin-Gorriz, B. & Soto-García, M., 2014. "Adaptive strategies of on-farm water management under water supply constraints in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 136(C), pages 59-67.
- Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).
- Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
- Li, Shengping & Tan, Deshui & Wu, Xueping & Degré, Aurore & Long, Huaiyu & Zhang, Shuxiang & Lu, Jinjing & Gao, Lili & Zheng, Fengjun & Liu, Xiaotong & Liang, Guopeng, 2021. "Negative pressure irrigation increases vegetable water productivity and nitrogen use efficiency by improving soil water and NO3–-N distributions," Agricultural Water Management, Elsevier, vol. 251(C).
- Kang, Mingoo & Park, Seungwoo, 2014. "Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations," Agricultural Water Management, Elsevier, vol. 143(C), pages 131-141.
- Pasquale Garofalo & Anna Rita Bernadette Cammerino, 2025. "Modeling the Performance of a Continuous Durum Wheat Cropping System in a Mediterranean Environment: Carbon and Water Footprint at Different Sowing Dates, Under Rainfed and Irrigated Water Regimes," Agriculture, MDPI, vol. 15(3), pages 1-30, January.
- Darouich, Hanaa & Karfoul, Razan & Eid, Haitham & Ramos, Tiago B. & Baddour, Nisreen & Moustafa, Ali & Assaad, Mahmoud I., 2020. "Modeling Zucchini squash irrigation requirements in the Syrian Akkar region using the FAO56 dual-Kc approach," Agricultural Water Management, Elsevier, vol. 229(C).
- Wang, Xiaolin & Ren, Yuanyuan & Zhang, Suiqi & Chen, Yinglong & Wang, Nan, 2017. "Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 88-98.
- Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
- Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
- Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
More about this item
Keywords
cultivation lines; growth period; plant population; sugar percentage; water productivity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:68:y:2022:i:8:id:151-2022-pse. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.