IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v110y2012icp63-77.html
   My bibliography  Save this article

Multi-objective optimization and design of farming systems

Author

Listed:
  • Groot, Jeroen C.J.
  • Oomen, Gerard J.M.
  • Rossing, Walter A.H.

Abstract

Reconfiguration of farming systems to reach various productive and environmental objectives while meeting farm and policy constraints is complicated by the large array of farm components involved, and the multitude of interrelations among these components. This hampers the evaluation of relations between various farm performance indicators and of consequences of adjustments in farm management. Here we present the FarmDESIGN model, which has been developed to overcome these limitations by coupling a bio-economical farm model that evaluates the productive, economic and environmental farm performance, to a multi-objective optimization algorithm that generates a large set of Pareto-optimal alternative farm configurations. The model was implemented for a 96ha mixed organic farm in the Netherlands that represents an example with relevant complexity, comprising various crop rotations, permanent grasslands and dairy cattle. Inputs were derived from a number of talks with the farmers and from literature. After design-, output- and end-user validation the optimization module of the model was used to explore consequences of reconfiguration. The optimization aimed to maximize the operating profit and organic matter balance, and to minimize the labor requirement and soil nitrogen losses. The model outcomes showed that trade-offs existed among various objectives, and at the same time identified a collection of alternative farm configurations that performed better for all four objectives when compared to the original farm. Relatively small modifications in the farm configuration resulted in considerable improvement of farm performance. This modeling study demonstrated the usefulness of multi-objective optimization in the design of mixed farming systems; the potential of the model to support the learning and decision-making processes of farmers and advisers is discussed.

Suggested Citation

  • Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
  • Handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:63-77 DOI: 10.1016/j.agsy.2012.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12000558
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bockstaller, C. & Girardin, P., 2003. "How to validate environmental indicators," Agricultural Systems, Elsevier, vol. 76(2), pages 639-653, May.
    2. Modin-Edman, Anna-Karin & Oborn, Ingrid & Sverdrup, Harald, 2007. "FARMFLOW--A dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm," Agricultural Systems, Elsevier, vol. 94(2), pages 431-444, May.
    3. Thornton, P. K. & Herrero, M., 2001. "Integrated crop-livestock simulation models for scenario analysis and impact assessment," Agricultural Systems, Elsevier, vol. 70(2-3), pages 581-602.
    4. Huirne, Ruud, 1990. "Basic Concepts of Computerised Support for Farm Management Decisions," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 17(1), pages 69-84.
    5. Sterk, B. & van Ittersum, M.K. & Leeuwis, C. & Rossing, W.A.H. & van Keulen, H. & van de Ven, G.W.J., 2006. "Finding niches for whole-farm design models - contradictio in terminis?," Agricultural Systems, Elsevier, vol. 87(2), pages 211-228, February.
    6. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    7. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    8. Dogliotti, S. & van Ittersum, M.K. & Rossing, W.A.H., 2005. "A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 86(1), pages 29-51, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    2. Kragt, Marit E. & Robertson, Michael J., 2014. "Quantifying ecosystem services trade-offs from agricultural practices," Ecological Economics, Elsevier, vol. 102(C), pages 147-157.
    3. Cortez-Arriola, José & Groot, Jeroen C.J. & Améndola Massiotti, Ricardo D. & Scholberg, Johannes M.S. & Valentina Mariscal Aguayo, D. & Tittonell, Pablo & Rossing, Walter A.H., 2014. "Resource use efficiency and farm productivity gaps of smallholder dairy farming in North-west Michoacán, Mexico," Agricultural Systems, Elsevier, pages 15-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:63-77. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.