IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v110y2012icp63-77.html
   My bibliography  Save this article

Multi-objective optimization and design of farming systems

Author

Listed:
  • Groot, Jeroen C.J.
  • Oomen, Gerard J.M.
  • Rossing, Walter A.H.

Abstract

Reconfiguration of farming systems to reach various productive and environmental objectives while meeting farm and policy constraints is complicated by the large array of farm components involved, and the multitude of interrelations among these components. This hampers the evaluation of relations between various farm performance indicators and of consequences of adjustments in farm management. Here we present the FarmDESIGN model, which has been developed to overcome these limitations by coupling a bio-economical farm model that evaluates the productive, economic and environmental farm performance, to a multi-objective optimization algorithm that generates a large set of Pareto-optimal alternative farm configurations. The model was implemented for a 96ha mixed organic farm in the Netherlands that represents an example with relevant complexity, comprising various crop rotations, permanent grasslands and dairy cattle. Inputs were derived from a number of talks with the farmers and from literature. After design-, output- and end-user validation the optimization module of the model was used to explore consequences of reconfiguration. The optimization aimed to maximize the operating profit and organic matter balance, and to minimize the labor requirement and soil nitrogen losses. The model outcomes showed that trade-offs existed among various objectives, and at the same time identified a collection of alternative farm configurations that performed better for all four objectives when compared to the original farm. Relatively small modifications in the farm configuration resulted in considerable improvement of farm performance. This modeling study demonstrated the usefulness of multi-objective optimization in the design of mixed farming systems; the potential of the model to support the learning and decision-making processes of farmers and advisers is discussed.

Suggested Citation

  • Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.
  • Handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:63-77
    DOI: 10.1016/j.agsy.2012.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12000558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bockstaller, C. & Girardin, P., 2003. "How to validate environmental indicators," Agricultural Systems, Elsevier, vol. 76(2), pages 639-653, May.
    2. Modin-Edman, Anna-Karin & Oborn, Ingrid & Sverdrup, Harald, 2007. "FARMFLOW--A dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm," Agricultural Systems, Elsevier, vol. 94(2), pages 431-444, May.
    3. Thornton, P. K. & Herrero, M., 2001. "Integrated crop-livestock simulation models for scenario analysis and impact assessment," Agricultural Systems, Elsevier, vol. 70(2-3), pages 581-602.
    4. Huirne, Ruud, 1990. "Basic Concepts of Computerised Support for Farm Management Decisions," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 17(1), pages 69-84.
    5. Sterk, B. & van Ittersum, M.K. & Leeuwis, C. & Rossing, W.A.H. & van Keulen, H. & van de Ven, G.W.J., 2006. "Finding niches for whole-farm design models - contradictio in terminis?," Agricultural Systems, Elsevier, vol. 87(2), pages 211-228, February.
    6. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    7. Tittonell, P. & van Wijk, M.T. & Rufino, M.C. & Vrugt, J.A. & Giller, K.E., 2007. "Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya," Agricultural Systems, Elsevier, vol. 95(1-3), pages 76-95, December.
    8. Dogliotti, S. & van Ittersum, M.K. & Rossing, W.A.H., 2005. "A method for exploring sustainable development options at farm scale: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 86(1), pages 29-51, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    2. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    3. Dupré, Marie & Blazy, Jean-Marc & Michels, Thierry & Le Gal, Pierre-Yves, 2021. "Supporting policymakers in designing agricultural policy instruments: A participatory approach with a regional bioeconomic model in La Réunion (France)," Land Use Policy, Elsevier, vol. 100(C).
    4. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    5. van Wijk, Mark T. & Tittonell, Pablo & Rufino, Mariana C. & Herrero, Mario & Pacini, Cesare & Ridder, Nico de & Giller, Ken E., 2009. "Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM," Agricultural Systems, Elsevier, vol. 102(1-3), pages 89-101, October.
    6. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    7. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    8. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    9. Cortez-Arriola, José & Groot, Jeroen C.J. & Rossing, Walter A.H. & Scholberg, Johannes M.S. & Améndola Massiotti, Ricardo D. & Tittonell, Pablo, 2016. "Alternative options for sustainable intensification of smallholder dairy farms in North-West Michoacán, Mexico," Agricultural Systems, Elsevier, vol. 144(C), pages 22-32.
    10. Juventia, Stella D. & Selin Norén, Isabella L.M. & van Apeldoorn, Dirk F. & Ditzler, Lenora & Rossing, Walter A.H., 2022. "Spatio-temporal design of strip cropping systems," Agricultural Systems, Elsevier, vol. 201(C).
    11. McDonald, C.K. & MacLeod, N.D. & Lisson, S. & Corfield, J.P., 2019. "The Integrated Analysis Tool (IAT) – A model for the evaluation of crop-livestock and socio-economic interventions in smallholder farming systems," Agricultural Systems, Elsevier, vol. 176(C).
    12. Sheng Hang & Jing Li & Xiangbo Xu & Yun Lyu & Yang Li & Huarui Gong & Yan Xu & Zhu Ouyang, 2021. "An Optimization Scheme of Balancing GHG Emission and Income in Circular Agriculture System," Sustainability, MDPI, vol. 13(13), pages 1-15, June.
    13. Vayssières, Jonathan & Guerrin, François & Paillat, Jean-Marie & Lecomte, Philippe, 2009. "GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises Part I - Whole-farm dynamic model," Agricultural Systems, Elsevier, vol. 101(3), pages 128-138, July.
    14. Mugurel Ionel JITEA & Diana Elena DUMITRAȘ & Vasile Alexandru SIMU, 2015. "An ex-ante impact assessment of the Common Agricultural Policy reform in the North-Western Romania," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(2), pages 88-103.
    15. Lairez, Juliette & Jourdain, Damien & Lopez-Ridaura, Santiago & Syfongxay, Chanthaly & Affholder, François, 2023. "Multicriteria assessment of alternative cropping systems at farm level. A case with maize on family farms of South East Asia," Agricultural Systems, Elsevier, vol. 212(C).
    16. Morel, Kevin & San Cristobal, Magali & Léger, François Gilbert, 2018. "Simulating incomes of radical organic farms with MERLIN: A grounded modeling approach for French microfarms," Agricultural Systems, Elsevier, vol. 161(C), pages 89-101.
    17. Swallow, Kimberly A. & Swallow, Brent M., 2015. "Explicitly integrating institutions into bioeconomic modeling:," IFPRI discussion papers 1420, International Food Policy Research Institute (IFPRI).
    18. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    19. Argyris Kanellopoulos & Paul Berentsen & Thomas Heckelei & Martin Van Ittersum & Alfons Oude Lansink, 2010. "Assessing the Forecasting Performance of a Generic Bio‐Economic Farm Model Calibrated With Two Different PMP Variants," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 274-294, June.
    20. Chopin, Pierre & Doré, Thierry & Guindé, Loïc & Blazy, Jean-Marc, 2015. "MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics," Agricultural Systems, Elsevier, vol. 140(C), pages 26-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:110:y:2012:i:c:p:63-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.