IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2023-05-49.html
   My bibliography  Save this article

The Impact of Electricity Energy Production, Fossil Energy Consumption, Renewable Energy Consumption, Deforestation, and Agriculture towards Climate Change in Middle-Income Countries

Author

Listed:
  • Hadi Sasana

    (Universitas Tidar, Indonesia)

  • Panji Kusuma Prasetyanto

    (Universitas Tidar, Indonesia)

  • Diah Lufti Wijayanti

    (Universitas Pembangunan Nasional “Veteran†Yogyakarta, Indonesia.)

  • Ari Nurul Fatimah

    (Universitas Tidar, Indonesia)

Abstract

This study aims to determine the effect of electrical energy production, fossil energy consumption, renewable energy consumption, deforestation and agriculture on climate change in middle-income countries. The method of analysis uses the Fixed Effect Model Cross-section weight regression model. The results of the study found that the production of electrical energy, the consumption of fossil energy had a significant positive effect on climate change. The development of environmentally friendly technologies in the agricultural sector needs to be carried out so that the sector does not damage the climate in middle-income countries. Reducing deforestation and consumption of renewable energy in middle-income countries has a positive effect on efforts to cure climate change.

Suggested Citation

  • Hadi Sasana & Panji Kusuma Prasetyanto & Diah Lufti Wijayanti & Ari Nurul Fatimah, 2023. "The Impact of Electricity Energy Production, Fossil Energy Consumption, Renewable Energy Consumption, Deforestation, and Agriculture towards Climate Change in Middle-Income Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 442-449, September.
  • Handle: RePEc:eco:journ2:2023-05-49
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/14719/7507
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/14719
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuyu Li & Rongrong Li, 2021. "Revisiting the Existence of EKC Hypothesis under Different Degrees of Population Aging: Empirical Analysis of Panel Data from 140 Countries," IJERPH, MDPI, vol. 18(23), pages 1-19, December.
    2. Mongi Lassoued, 2021. "Control of corruption, microfinance, and income inequality in MENA countries: evidence from panel data," SN Business & Economics, Springer, vol. 1(7), pages 1-19, July.
    3. Boke Olén, Niklas & Roger, Fabian & Brady, Mark V. & Larsson, Cecilia & Andersson, Georg K.S. & Ekroos, Johan & Caplat, Paul & Smith, Henrik G. & Dänhardt, Juliana & Clough, Yann, 2021. "Effects of farm type on food production, landscape openness, grassland biodiversity, and greenhouse gas emissions in mixed agricultural-forestry regions," Agricultural Systems, Elsevier, vol. 189(C).
    4. Rawshan Ara Begum & Asif Raihan & Mohd Nizam Mohd Said, 2020. "Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    5. Khan, Muhammad Tariq Iqbal & Ali, Qamar & Ashfaq, Muhammad, 2018. "The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan," Renewable Energy, Elsevier, vol. 118(C), pages 437-451.
    6. Azad Haider & Wimal Rankaduwa & Muhammad Iftikhar ul Husnain & Farzana Shaheen, 2022. "Nexus between Agricultural Land Use, Economic Growth and N 2 O Emissions in Canada: Is There an Environmental Kuznets Curve?," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    7. Bosede Ngozi Adeleye & Romanus Osabohien & Adedoyin Isola Lawal & Tyrone De Alwis, 2021. "Energy use and the role of per capita income on carbon emissions in African countries," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-17, November.
    8. Serhiy Lyeonov & Tetyana Pimonenko & Yuriy Bilan & Dalia Štreimikienė & Grzegorz Mentel, 2019. "Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy," Energies, MDPI, vol. 12(20), pages 1-12, October.
    9. Jain, P.C., 1993. "Greenhouse effect and climate change: scientific basis and overview," Renewable Energy, Elsevier, vol. 3(4), pages 403-420.
    10. Mihaela Sterpu & Georgeta Soava & Anca Mehedintu, 2018. "Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    2. Raihan, Asif, 2023. "Nexus between greenhouse gas emissions and its determinants: The role of renewable energy and technological innovations towards green development in South Korea," Innovation and Green Development, Elsevier, vol. 2(3).
    3. Tomasz Rokicki & Aleksandra Perkowska, 2020. "Changes in Energy Supplies in the Countries of the Visegrad Group," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    4. Puertas, R. & Marti, L., 2021. "International ranking of climate change action: An analysis using the indicators from the Climate Change Performance Index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Wai-Ming To & Peter K. C. Lee & Antonio K. W. Lau, 2021. "Economic and Environmental Changes in Shenzhen—A Technology Hub in Southern China," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    6. Salim Almaliki & Nasim Monjezi, 2021. "Using new computer based techniques to optimise energy consumption in agricultural land levelling," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(4), pages 149-163.
    7. Nicoleta Mihaela Florea & Roxana Maria Bădîrcea & Ramona Costina Pîrvu & Alina Georgiana Manta & Marius Dalian Doran & Elena Jianu, 2020. "The impact of agriculture and renewable energy on climate change in Central and East European Countries," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(10), pages 444-457.
    8. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    9. Aleksandra Kuzior & Aleksy Kwilinski & Ihor Hroznyi, 2021. "The Factorial-Reflexive Approach to Diagnosing the Executors’ and Contractors’ Attitude to Achieving the Objectives by Energy Supplying Companies," Energies, MDPI, vol. 14(9), pages 1-16, April.
    10. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2023. "Development of a Spatial Tier 2 Emission Inventory for Agricultural Tractors by Combining Two Large-Scale Datasets," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    11. Wang, Xiuli, 2023. "Exploring the role of resource industry dependence and green finance in green development efficiency in the context of post-Covid-19 period," Resources Policy, Elsevier, vol. 85(PB).
    12. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    13. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    14. Daniela Nicoleta Sahlian & Adriana Florina Popa & Raluca Florentina Creţu, 2021. "Does the Increase in Renewable Energy Influence GDP Growth? An EU-28 Analysis," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Md Aslam Mia & Lucia Dalla Pellegrina & Cheng Zhang & Sunil Sangwan, 2022. "Efficiency Wage and Productivity in the Indian Microfinance Industry: A Panel Evidence," IIM Kozhikode Society & Management Review, , vol. 11(2), pages 235-252, July.
    16. Iryna Sotnyk & Tetiana Kurbatova & Yaroslavna Romaniuk & Olha Prokopenko & Viktoriya Gonchar & Yuriy Sayenko & Gunnar Prause & Aleksander Sapiński, 2022. "Determining the Optimal Directions of Investment in Regional Renewable Energy Development," Energies, MDPI, vol. 15(10), pages 1-26, May.
    17. Han Yan & Md. Qamruzzaman & Sylvia Kor, 2023. "Nexus between Green Investment, Fiscal Policy, Environmental Tax, Energy Price, Natural Resources, and Clean Energy—A Step towards Sustainable Development by Fostering Clean Energy Inclusion," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    18. Alina Vysochyna & Natalia Stoyanets & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Environmental Determinants of a Country’s Food Security in Short-Term and Long-Term Perspectives," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    19. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umair & Muhammad Umar Farooq & Abu Saad & Yong Sun, 2020. "Silage Corn Production Under Different Planting Methods In Rainfed Agriculture System: An Energy Analysis," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 32-35:2, August.
    20. Chien, FengSheng, 2022. "How renewable energy and non-renewable energy affect environmental excellence in N-11 economies?," Renewable Energy, Elsevier, vol. 196(C), pages 526-534.

    More about this item

    Keywords

    electrical energy production; climate change; greenhouse gas emission; fossil energy; renewable energy; deforestation;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2023-05-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.