IDEAS home Printed from
   My bibliography  Save this article

MEXICAN MAQUILA INDUSTRY OUTLOOK. A Quantitative Space-Time Analysis


  • F. Javier TRIVEZ


  • Angel Mauricio REYES
  • F. Javier ALIAGA


The aim of this article is to analyse the current situation and the short and mid term outlook of the maquila export industry in Mexico. The purpose is to carry out an analysis of quantitative economic conjuncture, by conveniently combining the necessary elements. Therefore, we have used an empiric base- relevant information expressed in monthly statistical time series of the Mexican value added of export income charged by maquila service (VAECMS) in national and state levels- and quantitative methods (statistical-econometrics techniques). Under this framework, we present a methodological proposal in order to analyse ARIMA models with outliers and calendar effects, then we use a reduced model for the signal extraction. The trend-cycle component is the most suitable way to consider the underlying evolution. From this component and from the growth rate and inertial behaviour we are able to extract the major conclusions of the current Mexican export maquila situation in general as well as in detail in the principal states of the country.

Suggested Citation

  • F. Javier TRIVEZ & Angel Mauricio REYES & F. Javier ALIAGA, 2009. "MEXICAN MAQUILA INDUSTRY OUTLOOK. A Quantitative Space-Time Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 9(1).
  • Handle: RePEc:eaa:eerese:v:9:y2009:i:9_2

    Download full text from publisher

    File URL:
    Download Restriction: Access usually restricted to subscribers. Free on line subscription for universities from low and middle income countries: See

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Maravall, Agustin & Pierce, David A, 1986. "The Transmission of Data Noise into Policy Noise in U.S. Monetary Control," Econometrica, Econometric Society, vol. 54(4), pages 961-979, July.
    2. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    3. Wai-Sum Chan, 1995. "Understanding the effect of time series outliers on sample autocorrelations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 179-186, June.
    4. Mendoza, Jorge Eduardo, 2002. "Educación, experiencia y especialización manufacturera en la frontera norte de México
      [Schooling, experience and manufacturing specialization along the northern border of Mexico]
      ," MPRA Paper 2811, University Library of Munich, Germany, revised 04 Apr 2002.
    5. F. Javier Trivez & Javier Nievas, 1998. "Analyzing the effects of level shifts and temporary changes on the identification of ARIMA models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(3), pages 409-424.
    6. F. Javier Trivez & Javier Nievas, 1996. "Comportamiento en muestras pequeñas de los atípicos innovacionales: Un ejercicio de simulación," Estudios de Economía Aplicada, Estudios de Economía Aplicada, vol. 5, pages 161-175, Junio.
    7. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Conjunctural Analysis; Signal Extraction; Underlying; Evolution; Underlying Growth; ARIMA Models; Outliers; Forecast.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • L69 - Industrial Organization - - Industry Studies: Manufacturing - - - Other


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eaa:eerese:v:9:y2009:i:9_2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (M. Carmen Guisan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.