IDEAS home Printed from https://ideas.repec.org/a/das/njaigs/v8y2025i1p162-186id362.html
   My bibliography  Save this article

Don’t Build a Rocket with Bicycle Blueprints: When AI Dreams Meet HR Realities

Author

Listed:
  • Nazia Tasleem
  • Abhishek Saddi
  • Mohammed Nadeem Ansari
  • Raghvendra Singh Raghav
  • Shiva Sharma

Abstract

Modern Human Resources (HR) strategies now base their core operations on Artificial Intelligence (AI) because it promises complete transformation of talent acquisition as well as workforce analytics and organizational decision-making. The lightning-fast AI capability advancements stimulate organizations to adopt systems prematurely before they have proper digital readiness and cultural preparedness. This paper examines the essential flaw between advanced AI technology capabilities and basic HR operational readiness that we describe as using "bicycle blueprints to construct rockets." An HR AI Maturity Model is proposed which includes technical infrastructure together with data quality and a battery of process digitization standards and organizational culture and leadership alignment criteria. Our study implements a benchmarking methodology to perform an industrial comparison of HR AI maturity. Organizations in information technology demonstrate advanced flexibility with experimental activities but manufacturing and healthcare face operational challenges caused by weak system structure, regulatory barriers, and inadequate data management practices. The implementation of unprepared AI deployment produces four covert burdens which include reduced system adoption, obscure algorithms, mismatched data, and dissatisfied stakeholder groups. The paper states clearly that AI cannot fix every organizational process while also stressing that human resources management systems need more than quick implementation solutions due to their inherent complex behavioral characteristics. The paper offers strategic guidelines for HR professionals to adopt responsible AI systems that encompass staged implementation against organizational development levels, with systematic privacy protocols, staff training initiatives, and human-focused AI approaches. A successful transformation of HR through AI technology requires more than just access to modern tools because it needs the ecosystem to demonstrate adequate preparedness. Organizations that are moving from AI hype to habitual use must examine their approach carefully to avoid mistakes between what they desire and what they actually accomplish. Success requires a systematic design enhanced by honesty and strict methodology to lead organizations toward their goals.

Suggested Citation

  • Nazia Tasleem & Abhishek Saddi & Mohammed Nadeem Ansari & Raghvendra Singh Raghav & Shiva Sharma, 2025. "Don’t Build a Rocket with Bicycle Blueprints: When AI Dreams Meet HR Realities," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 8(1), pages 162-186.
  • Handle: RePEc:das:njaigs:v:8:y:2025:i:1:p:162-186:id:362
    as

    Download full text from publisher

    File URL: https://newjaigs.com/index.php/JAIGS/article/view/362
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jarrahi, Mohammad Hossein, 2018. "Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making," Business Horizons, Elsevier, vol. 61(4), pages 577-586.
    2. Ida Merete Enholm & Emmanouil Papagiannidis & Patrick Mikalef & John Krogstie, 2022. "Artificial Intelligence and Business Value: a Literature Review," Information Systems Frontiers, Springer, vol. 24(5), pages 1709-1734, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haochen Guo & Petr Polak, 2023. "Intelligent finance and change management implications," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-8, December.
    2. Hans Fredrik Hansen & Elise Lillesund & Patrick Mikalef & Νajwa Altwaijry, 2024. "Understanding Artificial Intelligence Diffusion through an AI Capability Maturity Model," Information Systems Frontiers, Springer, vol. 26(6), pages 2147-2163, December.
    3. Robertson, Jeandri & Ferreira, Caitlin & Botha, Elsamari & Oosthuizen, Kim, 2024. "Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction," Business Horizons, Elsevier, vol. 67(5), pages 499-510.
    4. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    5. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    6. Borba, Rafael Lucas & de Paula Ferreira, Iuri Emmanuel & Bertucci Ramos, Paulo Henrique, 2024. "Addressing discriminatory bias in artificial intelligence systems operated by companies: An analysis of end-user perspectives," Technovation, Elsevier, vol. 138(C).
    7. Ivanov, Stanislav & Webster, Craig, 2024. "Automated decision-making: Hoteliers’ perceptions," Technology in Society, Elsevier, vol. 76(C).
    8. Sudhanshu Joshi & Manu Sharma & Rashmi Prava Das & Joanna Rosak-Szyrocka & Justyna Żywiołek & Kamalakanta Muduli & Mukesh Prasad, 2022. "Modeling Conceptual Framework for Implementing Barriers of AI in Public Healthcare for Improving Operational Excellence: Experiences from Developing Countries," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    9. Abdelhamid Zaidi & Samuel-Soma M. Ajibade & Majd Musa & Festus Victor Bekun, 2023. "New Insights into the Research Landscape on the Application of Artificial Intelligence in Sustainable Smart Cities: A Bibliometric Mapping and Network Analysis Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 287-299, July.
    10. Ballantine, Joan & Boyce, Gordon & Stoner, Greg, 2024. "A critical review of AI in accounting education: Threat and opportunity," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 99(C).
    11. Yao, Nengzhi(Chris) & Bai, Junhong & Yu, Zihao & Guo, Qiaozhe, 2025. "Does AI orientation facilitate operational efficiency? A contingent strategic orientation perspective," Journal of Business Research, Elsevier, vol. 186(C).
    12. Cheng-Feng Cheng & Chien-Che Huang & Ming-Chang Lin & Ta-Cheng Chen, 2023. "Exploring Effectiveness of Relationship Marketing on Artificial Intelligence Adopting Intention," SAGE Open, , vol. 13(4), pages 21582440231, December.
    13. Hind Aboussikine & Sonia Bendimerad & Thierry Sauvage & Mohamed Haouari, 2023. "Comment l’Intelligence Artificielle dompte la traçabilité des processus Supply Chain ? Application à NOZ France," Post-Print hal-04536092, HAL.
    14. Fazal Ur Rehman & Basheer M. Al-Ghazali & Adel Ghaleb Haddad & Ehab Abdullatif Qahwash & M. Sadiq Sohail, 2023. "Exploring the Reverse Relationship between Circular Economy Innovation and Digital Sustainability—The Dual Mediation of Government Incentives," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    15. Christopher Kurzhals & Lorenz Graf‐Vlachy & Andreas König, 2020. "Strategic leadership and technological innovation: A comprehensive review and research agenda," Corporate Governance: An International Review, Wiley Blackwell, vol. 28(6), pages 437-464, November.
    16. Gupta, Shivam & Modgil, Sachin & Choi, Tsan-Ming & Kumar, Ajay & Antony, Jiju, 2023. "Influences of artificial intelligence and blockchain technology on financial resilience of supply chains," International Journal of Production Economics, Elsevier, vol. 261(C).
    17. Youmi Suk & Kyung T. Han, 2024. "A Psychometric Framework for Evaluating Fairness in Algorithmic Decision Making: Differential Algorithmic Functioning," Journal of Educational and Behavioral Statistics, , vol. 49(2), pages 151-172, April.
    18. Ksenia V. Ekimova, 2023. "Development of the potential of the digital economy of Russian regions through artificial intelligence humanisation," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    19. Rohit Raj & Vimal Kumar & Pratima Verma, 2023. "Big data analytics in mitigating challenges of sustainable manufacturing supply chain," Operations Management Research, Springer, vol. 16(4), pages 1886-1900, December.
    20. Anna Trunk & Hendrik Birkel & Evi Hartmann, 2020. "On the current state of combining human and artificial intelligence for strategic organizational decision making," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 875-919, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:das:njaigs:v:8:y:2025:i:1:p:162-186:id:362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Open Knowledge (email available below). General contact details of provider: https://newjaigs.com/index.php/JAIGS/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.