IDEAS home Printed from https://ideas.repec.org/a/caa/jnlvet/v68y2023i8id78-2023-vetmed.html
   My bibliography  Save this article

Selected neonicotinoids and associated risk for aquatic organisms

Author

Listed:
  • A Strouhova

    (Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic)

  • J Velisek

    (Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic)

  • A Stara

    (Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic)

Abstract

Neonicotinoids are one of the newest groups of systemic pesticides, effective on a wide range of invertebrate pests. The success of neonicotinoids can be assessed according to the amount used, for example, in the Czech Republic, which now accounts for 1/3 of the insecticide market. The European Union (EU) has a relatively interesting attitude towards neonicotinoids. Three neonicotinoid substances (imidacloprid, clothianidin and thiamethoxam) were severely restricted in 2013. In 2019, imidacloprid and clothianidin were banned, while thiamethoxam and thiacloprid were banned in 2020. In 2022, another substance, sulfoxaflor, was banned. Therefore, only two neonicotinoid substances (acetamiprid and flupyradifurone) are approved for outdoor use in the EU. Neonicotinoids enter aquatic ecosystems in many ways. In European rivers, neonicotinoids usually occur in nanograms per litre. Due to the low toxicity of neonicotinoids to standard test species, they were not expected to significantly impact the aquatic ecosystem until later studies showed that aquatic invertebrates, especially insects, are much more sensitive to neonicotinoids. In addition to the lethal effects, many studies point to sublethal impacts - reduced reproductive capacity, initiation of downstream drift of organisms, reduced ability to eat, or a change in feeding strategies. Neonicotinoids can affect individuals, populations, and entire ecosystems.

Suggested Citation

  • A Strouhova & J Velisek & A Stara, 2023. "Selected neonicotinoids and associated risk for aquatic organisms," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 68(8), pages 313-336.
  • Handle: RePEc:caa:jnlvet:v:68:y:2023:i:8:id:78-2023-vetmed
    DOI: 10.17221/78/2023-VETMED
    as

    Download full text from publisher

    File URL: http://vetmed.agriculturejournals.cz/doi/10.17221/78/2023-VETMED.html
    Download Restriction: free of charge

    File URL: http://vetmed.agriculturejournals.cz/doi/10.17221/78/2023-VETMED.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/78/2023-VETMED?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Sánchez-Bayo & Henk A. Tennekes, 2020. "Time-Cumulative Toxicity of Neonicotinoids: Experimental Evidence and Implications for Environmental Risk Assessments," IJERPH, MDPI, vol. 17(5), pages 1-20, March.
    2. Richard J. Gill & Oscar Ramos-Rodriguez & Nigel E. Raine, 2012. "Combined pesticide exposure severely affects individual- and colony-level traits in bees," Nature, Nature, vol. 491(7422), pages 105-108, November.
    3. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Chen & Jie Zhang & Hongtao Wang & Lingyun Li & Meizhen Yin & Jie Shen & Shuo Yan & Baoyou Liu, 2024. "Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    2. Jinping Li & Da Cheng & Juanjuan Huang & Jian Kang & Baohong Jin & Vojislav Novakovic & Yasong Sun, 2025. "Influence of Additives on Solar-Controlled Anaerobic and Aerobic Processes of Cow Manure and Tomato Waste," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
    3. Wanglin Ma & Hongyun Zheng & Amaka Nnaji, 2023. "Cooperative membership and adoption of green pest control practices: Insights from rice farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(3), pages 459-479, July.
    4. Carlos Nuévalos-Tello & Daniel Hernández-Torres & Santiago Sardinero-Roscales & Miriam Pajares-Guerra & Anna Chilton & Raimundo Jiménez-Ballesta, 2024. "Ecological Restoration Process of El Hito Saline Lagoon: Potential Biodiversity Gain in an Agro-Natural Environment," Land, MDPI, vol. 13(12), pages 1-21, November.
    5. Rombeallo, Intan Parumbuan & Jamil, Muhammad Hatta & Rukmana, Didi, 2024. "Factors affecting farmers’ decision to join coffee producer cooperatives to improve their welfare," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 10(4), December.
    6. Inês Costa-Pereira & Ana A. R. M. Aguiar & Fernanda Delgado & Cristina A. Costa, 2024. "A Methodological Framework for Assessing the Agroecological Performance of Farms in Portugal: Integrating TAPE and ACT Approaches," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    7. Philbert Mperejekumana & Lei Shen & Shuai Zhong & Fabien Muhirwa & Assa Nsabiyeze & Jean Marie Vianney Nsigayehe & Anathalie Nyirarwasa, 2023. "Assessing the Capacity of the Water–Energy–Food Nexus in Enhancing Sustainable Agriculture and Food Security in Burundi," Sustainability, MDPI, vol. 15(19), pages 1-14, September.
    8. Patricia Mussali-Galante & María Luisa Castrejón-Godínez & José Antonio Díaz-Soto & Ángela Patricia Vargas-Orozco & Héctor Miguel Quiroz-Medina & Efraín Tovar-Sánchez & Alexis Rodríguez, 2023. "Biobeds, a Microbial-Based Remediation System for the Effective Treatment of Pesticide Residues in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-25, June.
    9. Salvatore Privitera & Emanuele Cerruto & Giuseppe Manetto & Sebastian Lupica & David Nuyttens & Donald Dekeyser & Ingrid Zwertvaegher & Marconi Ribeiro Furtado Júnior & Beatriz Costalonga Vargas, 2024. "Comparison between Liquid Immersion, Laser Diffraction, PDPA, and Shadowgraphy in Assessing Droplet Size from Agricultural Nozzles," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    10. Kun Zeng & Xiong Duan & Bin Chen & Lanxi Jia, 2025. "Spatiotemporal Heterogeneity of Eco-Efficiency of Cultivated Land Use and Its Influencing Factors: Evidence from the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
    11. Shuang Zhang & Shaobo Liu & Qikang Zhong & Kai Zhu & Hongpeng Fu, 2024. "Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing," Land, MDPI, vol. 13(8), pages 1-24, August.
    12. Manoj Kaushal & Mary Atieno & Sylvanus Odjo & Frederick Baijukya & Yosef Gebrehawaryat & Carlo Fadda, 2025. "Nature-Positive Agriculture—A Way Forward Towards Resilient Agrifood Systems," Sustainability, MDPI, vol. 17(3), pages 1-25, January.
    13. Caleb Kiplimo Bett, 2017. "Factors Influencing Quality Honey Production," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 7(11), pages 281-292, November.
    14. Zheng, Yanan & Goodhue, Rachael E., 2022. "Intensive or Extensive Margin Effects? Growers’ Responses to the Restriction of High-Volatile Organic Compound (VOC) Pesticide Products in the San Joaquin Valley, California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322085, Agricultural and Applied Economics Association.
    15. Zahoor Ahmad Shah & Mushtaq Ahmad Dar & Eajaz Ahmad Dar & Chukwujekwu A. Obianefo & Arif Hussain Bhat & Mohammed Tauseef Ali & Mohamed El-Sharnouby & Mustafa Shukry & Hosny Kesba & Samy Sayed, 2022. "Sustainable Fruit Growing: An Analysis of Differences in Apple Productivity in the Indian State of Jammu and Kashmir," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    16. Kleczkowski, Adam & Ellis, Ciaran & Hanley, Nick & Goulson, David, 2017. "Pesticides and bees: Ecological-economic modelling of bee populations on farmland," Ecological Modelling, Elsevier, vol. 360(C), pages 53-62.
    17. Ratana Sapbamrer & Jiraporn Chittrakul, 2022. "Determinants of Consumers’ Behavior in Reducing Pesticide Residues in Vegetables and Fruits, Northern Thailand," IJERPH, MDPI, vol. 19(20), pages 1-11, October.
    18. Bahromiddin Husenov & Siham Asaad & Hafiz Muminjanov & Larisa Garkava-Gustavsson & Eva Johansson, 2021. "Sustainable Wheat Production and Food Security of Domestic Wheat in Tajikistan: Implications of Seed Health and Protein Quality," IJERPH, MDPI, vol. 18(11), pages 1-20, May.
    19. Emilia Ludwiczak & Mariusz Nietupski & Beata Gabryś & Cezary Purwin & Bożena Kordan, 2024. "Selected Chemical Parameters of Cereal Grain Influencing the Development of Rhyzopertha dominica F," Sustainability, MDPI, vol. 16(16), pages 1-15, August.
    20. G. Kleftodimos & N. Gallai & Ch. Kephaliacos, 2021. "Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops," Journal of Bioeconomics, Springer, vol. 23(3), pages 297-323, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlvet:v:68:y:2023:i:8:id:78-2023-vetmed. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.