IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v67y2021i2id457-2020-pse.html
   My bibliography  Save this article

The effect of heat stress on some main spike traits in 12 wheat cultivars at anthesis and mid-grain filling stage

Author

Listed:
  • Milan Mirosavljević

    (Institute of Field and Vegetable Crops, Novi Sad, Serbia)

  • Sanja Mikić

    (Institute of Field and Vegetable Crops, Novi Sad, Serbia)

  • Ankica Kondić Špika

    (Institute of Field and Vegetable Crops, Novi Sad, Serbia)

  • Vesna Župunski

    (Institute of Field and Vegetable Crops, Novi Sad, Serbia)

  • Rong Zhou

    (Department of Food Science, Aarhus University, Aarhus N, Denmark)

  • Lamis Abdelhakim

    (Department of Food Science, Aarhus University, Aarhus N, Denmark)

  • Carl-Otto Ottosen

    (Department of Food Science, Aarhus University, Aarhus N, Denmark)

Abstract

High temperature decreases winter wheat grain yield by reducing the grain number and grain weight. The effect of heat stress on spike grain distribution and weight of individual grains within spike and spikelets was less studied. Our aim is to identify influence of high temperatures during different phenological stages on spike grain distribution and weight and to explore genotypic variation of the studied wheat cultivars. Within this study, a controlled experiment was conducted with 12 different winter wheat cultivars under heat stress at anthesis and mid-grain filling stage. The results showed that spike grain weight, thousand-grain weight and grain number per spike decreased moderately in treatments with individual heat stress at anthesis and mid-grain filling period, respectively, which decreased severely in the multiple heat stressed plants at both stages compared with the control treatment. Heat stress decreased number of spikelets with grains. Grain weight at the G1, G2 and G3 positions had a positive relationship with spike grain weight. Among the studied Serbian wheat cultivars Subotičanka and Renesansa were identified as the most heat tolerant and sensitive, respectively. Heat tolerance of the studied cultivars should be based on the cultivar capacity to retain higher grain weight, and to maintain production of distal spikelet grains.

Suggested Citation

  • Milan Mirosavljević & Sanja Mikić & Ankica Kondić Špika & Vesna Župunski & Rong Zhou & Lamis Abdelhakim & Carl-Otto Ottosen, 2021. "The effect of heat stress on some main spike traits in 12 wheat cultivars at anthesis and mid-grain filling stage," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(2), pages 71-76.
  • Handle: RePEc:caa:jnlpse:v:67:y:2021:i:2:id:457-2020-pse
    DOI: 10.17221/457/2020-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/457/2020-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/457/2020-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/457/2020-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Chen & lvzhou Liu & Hongmei Cai & Baoqiang Zheng & Jincai Li, 2024. "Effects of spring low-temperature stress on winter wheat seed-setting characteristics of spike," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(2), pages 84-92.
    2. Zhijie Ren & Hui Zhang & Hongjie Li & Qinghui Wu & Yufang Huang & Youliang Ye & Yanan Zhao, 2025. "Improving Wheat Yield, Fertilizer Use Efficiency, and Economic Benefits Through Farmer-Participation Nutrient Management," Sustainability, MDPI, vol. 17(8), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    2. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    3. Andersen, Lykke E. & Breisinger, Clemens & Jemio, Luis Carlos & Mason-D'Croz, Daniel & Ringler, Claudia & Robertson, Richard D. & Verner, Dorte & Wiebelt, Manfred, 2016. "Climate change impacts and household resilience: Prospects for 2050 in Brazil, Mexico, and Peru," Food policy reports 978-0-89629-581-0, International Food Policy Research Institute (IFPRI).
    4. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    5. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    6. Grusson, Youen & Wesström, Ingrid & Joel, Abraham, 2021. "Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need," Agricultural Water Management, Elsevier, vol. 251(C).
    7. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    8. Nordmeyer, Eike Florenz, 2023. "German farmers' perceived usefulness of satellite-based index insurance - Insights from a transtheoretical model," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334557, Agricultural Economics Society - AES.
    9. Viviana Tudela & Pablo Sarricolea & Roberto Serrano-Notivoli & Oliver Meseguer-Ruiz, 2023. "A pilot study for climate risk assessment in agriculture: a climate-based index for cherry trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 163-185, January.
    10. Francesco Reyes & Marie Gosme & Kevin J. Wolz & Isabelle Lecomte & Christian Dupraz, 2021. "Alley Cropping Mitigates the Impacts of Climate Change on a Wheat Crop in a Mediterranean Environment: A Biophysical Model-Based Assessment," Agriculture, MDPI, vol. 11(4), pages 1-18, April.
    11. I. Barányiová & K. Klem, 2016. "Effect of application of growth regulators on the physiological and yield parameters of winter wheat under water deficit," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(3), pages 114-120.
    12. Cheng Miao & Jing Xie & Yingdong Li, 2024. "Evaluating the risk and its acceptability of crop yield reduction in Northwest China under the impact of wind hail disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14027-14048, December.
    13. Wiktor Halecki & Dawid Bedla, 2022. "Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis," Resources, MDPI, vol. 11(12), pages 1-11, December.
    14. Li, Xiao & Liu, Pan & Feng, Maoyuan & Jordaan, Sarah M. & Cheng, Lei & Ming, Bo & Chen, Jie & Xie, Kang & Liu, Weibo, 2024. "Energy transition paradox: Solar and wind growth can hinder decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    16. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Pandey, Ghanshyam, 2021. "Benefits of irrigation against heat stress in agriculture: Evidence from wheat crop in India," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Javier Aliaga Lordemann & Adriana Beatriz Caballero Caballero, 2024. "Evaluating Quinoa Crop Yield in the Face of Agro-climatic Stressors Using the NL-CROP Model," Development Research Working Paper Series 17/2024, Institute for Advanced Development Studies.
    18. Heikki Lehtonen & Taru Palosuo & Panu Korhonen & Xing Liu, 2018. "Higher Crop Yield Levels in the North Savo Region—Means and Challenges Indicated by Farmers and Their Close Stakeholders," Agriculture, MDPI, vol. 8(7), pages 1-14, June.
    19. Mäkinen Hanna & Kaseva Janne & Virkajärvi Perttu & Kahiluoto Helena, 2018. "Gaps in the capacity of modern forage crops to adapt to the changing climate in northern Europe," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 81-100, January.
    20. Martins, Minella Alves & Tomasella, Javier & Dias, Cássia Gabriele, 2019. "Maize yield under a changing climate in the Brazilian Northeast: Impacts and adaptation," Agricultural Water Management, Elsevier, vol. 216(C), pages 339-350.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:67:y:2021:i:2:id:457-2020-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.