IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v19y2015i4p501-529n4.html
   My bibliography  Save this article

Estimating dynamic copula dependence using intraday data

Author

Listed:
  • Grossmass Lidan

    (Department of Economics, University of Konstanz, Box 124, 78457 Konstanz, Germany)

  • Poon Ser-Huang

    (Manchester Business School, Crawford House, University of Manchester, Manchester, UK)

Abstract

We estimate the dynamic daily dependence between assets by applying the Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model on intraday data. Using tick data of three stock returns of the period before and during the credit crisis, we find that our dependence estimator better captures the steep increase in dependence during the onset of the crisis as compared to other commonly used time-varying copula methods. Like other high-frequency estimators, we find that the dependence estimator exhibits long memory and forecast it using a HAR model. We show that for out-of-sample forecasts, our dependence estimator performs better than the constant estimator and other commonly used time-varying copula dependence estimators.

Suggested Citation

  • Grossmass Lidan & Poon Ser-Huang, 2015. "Estimating dynamic copula dependence using intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 501-529, September.
  • Handle: RePEc:bpj:sndecm:v:19:y:2015:i:4:p:501-529:n:4
    DOI: 10.1515/snde-2013-0123
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2013-0123
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2013-0123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.
    2. Jiang, Cuixia & Ding, Xiaoyi & Xu, Qifa & Tong, Yongbo, 2020. "A TVM-Copula-MIDAS-GARCH model with applications to VaR-based portfolio selection," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    3. Arnab Chakrabarti & Rituparna Sen, 2019. "Copula estimation for nonsynchronous financial data," Papers 1904.10182, arXiv.org, revised Sep 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    2. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    3. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    4. Katerina Papagiannouli, 2022. "A Lepskiĭ-type stopping rule for the covariance estimation of multi-dimensional Lévy processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 505-535, October.
    5. repec:kap:iaecre:v:14:y:2008:i:1:p:112-124 is not listed on IDEAS
    6. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    7. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," OFRC Working Papers Series 2009fe03, Oxford Financial Research Centre.
    8. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    9. Elsayed, Ahmed H. & Asutay, Mehmet & ElAlaoui, Abdelkader O. & Bin Jusoh, Hashim, 2024. "Volatility spillover across spot and futures markets: Evidence from dual financial system," Research in International Business and Finance, Elsevier, vol. 71(C).
    10. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    11. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    12. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    13. Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.
    14. Almut E. D. Veraart & Luitgard A. M. Veraart, 2013. "Risk premia in energy markets," CREATES Research Papers 2013-02, Department of Economics and Business Economics, Aarhus University.
    15. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    16. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    17. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    18. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    20. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    21. Silja Kinnebrock & Mark Podolskij, 2008. "An Econometric Analysis of Modulated Realised Covariance, Regression and Correlation in Noisy Diffusion Models," CREATES Research Papers 2008-23, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    copula; high frequency data; intraday dependence; time-varying dependence; value-at-risk;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:19:y:2015:i:4:p:501-529:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.