IDEAS home Printed from https://ideas.repec.org/a/bpj/apjrin/v3y2009i2n2.html
   My bibliography  Save this article

Missing (Completely?) At Random: Lessons from Insurance Studies

Author

Listed:
  • Yeh Jason Jia-Hsing

    (Chinese University of Hong Kong)

Abstract

A dilemma frequently faced by empirical researchers is whether they should keep observations without complete information in the analysis. Assuming missingness is not biased in any perceivable direction, most studies use a complete case analysis approach, whereby only observations with complete information are kept for empirical estimation. However, the literature on statistics (e.g., Little and Rubin 2002) suggests that potential biases may arise from such practice, especially if missing data are not missing completely at random (MCAR). When there are missing data, Littles MCAR test (1988) can be performed to reveal whether imputation methods are necessary to minimize the problems arising from incomplete data. We take two recently studied insurance data sets as examples to show that missing data issues can be better handled.

Suggested Citation

  • Yeh Jason Jia-Hsing, 2009. "Missing (Completely?) At Random: Lessons from Insurance Studies," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(2), pages 1-13, April.
  • Handle: RePEc:bpj:apjrin:v:3:y:2009:i:2:n:2
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/apjri.2009.3.2/apjri.2009.3.2.1037/apjri.2009.3.2.1037.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven B. Caudill & Mercedes Ayuso & Montserrat Guillén, 2005. "Fraud Detection Using a Multinomial Logit Model With Missing Information," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 539-550.
    2. Little, Roderick J A, 1985. "A Note about Models for Selectivity Bias," Econometrica, Econometric Society, vol. 53(6), pages 1469-1474, November.
    3. Joan T. Schmit & Jia-Hsing Yeh, 2003. "An Economic Analysis of Auto Compensation Systems: Choice Experiences From New Jersey and Pennsylvania," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 601-628.
    4. Browne, Mark J & Puelz, Robert, 1999. "The Effect of Legal Rules on the Value of Economic and Non-economic Damages and the Decision to File," Journal of Risk and Uncertainty, Springer, vol. 18(2), pages 189-213, August.
    5. Horton N.J. & Lipsitz S.R. & Parzen M., 2003. "A Potential for Bias When Rounding in Multiple Imputation," The American Statistician, American Statistical Association, vol. 57, pages 229-232, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:apjrin:v:3:y:2009:i:2:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.