IDEAS home Printed from https://ideas.repec.org/a/bla/socsci/v103y2022i2p409-424.html
   My bibliography  Save this article

Private prison stocks and the 2020 presidential election

Author

Listed:
  • Stephen V. Marks
  • Seth C. Pope

Abstract

Objective Can we gain insight into the outcomes of presidential elections, and their determinants, other than through opinion polling or prediction markets? This matters because of recent misses in polling and the contestation of the 2020 election beyond Election Day. Methods Using alternative generalized autoregressive conditional heteroskedasticity models, we conduct an event study of two U.S. private prison companies, whose valuations have depended on their being awarded federal contracts, during the 2020 campaign and afterward. Results Comparison around Election Day of changes in prison company stock prices based on these models and in the predicted probability of President Trump being reelected based on a popular prediction market allows inference of the effects of the January 6 incident at the U.S. Capitol and the Biden inauguration on the subjective probability that Trump would retain power. Conclusion The probability of Trump retaining power that was reflected in asset markets remained positive up to the Biden inauguration—a real‐time indication of the fragility of American democracy.

Suggested Citation

  • Stephen V. Marks & Seth C. Pope, 2022. "Private prison stocks and the 2020 presidential election," Social Science Quarterly, Southwestern Social Science Association, vol. 103(2), pages 409-424, March.
  • Handle: RePEc:bla:socsci:v:103:y:2022:i:2:p:409-424
    DOI: 10.1111/ssqu.13127
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ssqu.13127
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ssqu.13127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Knight*, Brian, 2007. "Are policy platforms capitalized into equity prices? Evidence from the Bush/Gore 2000 Presidential Election," Journal of Public Economics, Elsevier, vol. 91(1-2), pages 389-409, February.
    2. Erik Snowberg & Justin Wolfers & Eric Zitzewitz, 2007. "Partisan Impacts on the Economy: Evidence from Prediction Markets and Close Elections," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 807-829.
    3. Knight*, Brian, 2007. "Are policy platforms capitalized into equity prices? Evidence from the Bush/Gore 2000 Presidential Election," Journal of Public Economics, Elsevier, vol. 91(1-2), pages 389-409, February.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    2. Hanke, Michael & Stöckl, Sebastian & Weissensteiner, Alex, 2020. "Political event portfolios," Journal of Banking & Finance, Elsevier, vol. 118(C).
    3. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    4. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    5. Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
    6. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    7. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    8. Brooks, Robert D. & Davidson, Sinclair & Faff, Robert W., 1997. "An examination of the effects of major political change on stock market volatility: the South African experience," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(3), pages 255-275, October.
    9. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    10. Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.
    11. Wolfers, Justin & Zitzewitz, Eric, 2006. "Prediction Markets in Theory and Practice," CEPR Discussion Papers 5578, C.E.P.R. Discussion Papers.
    12. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    13. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
    14. Fabio Milani, 2010. "Public option and private profits," Applied Health Economics and Health Policy, Springer, vol. 8(3), pages 155-165, May.
    15. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    16. Osterloh, Steffen, 2018. "How do politics affect economic sentiment? The effects of uncertainty and policy preferences," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181614, Verein für Socialpolitik / German Economic Association.
    17. Ioannis D Vrontos & Loukia Meligkotsidou & Spyridon D Vrontos, 2011. "Performance evaluation of mutual fund investments: The impact of non-normality and time-varying volatility," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 292-307, September.
    18. Hu, Michael Y. & Jiang, Christine X. & Tsoukalas, Christos, 1997. "The European exchange rates before and after the establishment of the European Monetary System," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(3), pages 235-253, October.
    19. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    20. Takaishi, Tetsuya, 2025. "Multifractality and sample size influence on Bitcoin volatility patterns," Finance Research Letters, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:socsci:v:103:y:2022:i:2:p:409-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0038-4941 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.