IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v31y2022i11p4021-4037.html
   My bibliography  Save this article

Optimization of active surveillance strategies for heterogeneous patients with prostate cancer

Author

Listed:
  • Zheng Zhang
  • Brian T. Denton
  • Todd M. Morgan

Abstract

Prostate cancer (PCa) is common in American men with long latent periods, during which the disease is asymptomatic. Active surveillance is a monitoring strategy commonly used for patients diagnosed with low‐risk PCa who may harbor latent high‐risk PCa. The optimal monitoring strategy attempts to minimize the disutility of testing while ensuring that the patient is detected at the earliest time when the disease progresses. Unfortunately, guidelines for the active surveillance of PCa are often one‐size‐fits‐all strategies that ignore the heterogeneity among multiple patient types. In contrast, personalized strategies based on partially observable Markov decision process (POMDP) models are challenging to implement in practice given the large number of possible strategies that can be used. This article presents a two‐stage stochastic programming approach that selects a set of strategies for predefined cardinality based on patients' disease risks. The first‐stage decision variables include binary variables for the selection of periods at which to test patients in each strategy and the assignment of multiple patient types to strategies. The objective is to maximize a weighted reward function that considers the need for cancer detection, missed detection, and cost of monitoring patients. We discuss the structure and complexity of the model and reformulate a logic‐based Bender's decomposition formulation that can solve realistic instances to optimality. We present a case study for the active surveillance of PCa and show that our model results in strategies that vary in intensity according to patient disease risk. Finally, we show that our model can generate a small number of strategies that can significantly improve the existing “one‐size‐fits‐all” guideline strategies used in practice.

Suggested Citation

  • Zheng Zhang & Brian T. Denton & Todd M. Morgan, 2022. "Optimization of active surveillance strategies for heterogeneous patients with prostate cancer," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 4021-4037, November.
  • Handle: RePEc:bla:popmgt:v:31:y:2022:i:11:p:4021-4037
    DOI: 10.1111/poms.13800
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13800
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & John Silberholz & Thomas Trikalinos, 2018. "Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening," Health Care Management Science, Springer, vol. 21(1), pages 105-118, March.
    2. Jingyu Zhang & Brian T. Denton & Hari Balasubramanian & Nilay D. Shah & Brant A. Inman, 2012. "Optimization of Prostate Biopsy Referral Decisions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 529-547, October.
    3. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    4. Harwin de Vries & Joris van de Klundert & Albert Wagelmans, 2021. "Toward Elimination of Infectious Diseases with Mobile Screening Teams: HAT in the DRC," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3408-3428, October.
    5. Sait Tunç & Oguzhan Alagoz & Elizabeth S. Burnside, 2022. "A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2361-2378, May.
    6. Daniel Underwood & Jingyu Zhang & Brian Denton & Nilay Shah & Brant Inman, 2012. "Simulation optimization of PSA-threshold based prostate cancer screening policies," Health Care Management Science, Springer, vol. 15(4), pages 293-309, December.
    7. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    8. Lauren N. Steimle & Brian T. Denton, 2017. "Markov Decision Processes for Screening and Treatment of Chronic Diseases," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. van Dijk (ed.), Markov Decision Processes in Practice, chapter 0, pages 189-222, Springer.
    9. Fatih Safa Erenay & Oguzhan Alagoz & Adnan Said, 2014. "Optimizing Colonoscopy Screening for Colorectal Cancer Prevention and Surveillance," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 381-400, July.
    10. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    11. Margaret L. Brandeau & Douglas K. Owens & Carol H. Sox & Robert M. Wachter, 1993. "Screening Women of Childbearing Age for Human Immunodeficiency Virus: A Model-Based Policy Analysis," Management Science, INFORMS, vol. 39(1), pages 72-92, January.
    12. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    2. Robert Kraig Helmeczi & Can Kavaklioglu & Mucahit Cevik & Davood Pirayesh Neghab, 2023. "A multi-objective constrained partially observable Markov decision process model for breast cancer screening," Operational Research, Springer, vol. 23(2), pages 1-42, June.
    3. Li, Weiyu & Denton, Brian T. & Morgan, Todd M., 2023. "Optimizing active surveillance for prostate cancer using partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 305(1), pages 386-399.
    4. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    5. Elliot Lee & Mariel Lavieri & Michael Volk & Yongcai Xu, 2015. "Applying reinforcement learning techniques to detect hepatocellular carcinoma under limited screening capacity," Health Care Management Science, Springer, vol. 18(3), pages 363-375, September.
    6. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    7. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    8. Wang, Fan & Zhang, Shengfan & Henderson, Louise M., 2018. "Adaptive decision-making of breast cancer mammography screening: A heuristic-based regression model," Omega, Elsevier, vol. 76(C), pages 70-84.
    9. Boloori, Alireza & Saghafian, Soroush & Chakkera, Harini A. A. & Cook, Curtiss B., 2017. "Data-Driven Management of Post-transplant Medications: An APOMDP Approach," Working Paper Series rwp17-036, Harvard University, John F. Kennedy School of Government.
    10. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    11. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    12. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.
    13. Jing Li & Ming Dong & Yijiong Ren & Kaiqi Yin, 2015. "How patient compliance impacts the recommendations for colorectal cancer screening," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 920-937, November.
    14. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    15. Daniel F. Otero-Leon & Mariel S. Lavieri & Brian T. Denton & Jeremy Sussman & Rodney A. Hayward, 2023. "Monitoring policy in the context of preventive treatment of cardiovascular disease," Health Care Management Science, Springer, vol. 26(1), pages 93-116, March.
    16. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    17. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    18. Li, Y. & Zhu, M. & Klein, R. & Kong, N., 2014. "Using a partially observable Markov chain model to assess colonoscopy screening strategies – A cohort study," European Journal of Operational Research, Elsevier, vol. 238(1), pages 313-326.
    19. Otten, Maarten & Timmer, Judith & Witteveen, Annemieke, 2020. "Stratified breast cancer follow-up using a continuous state partially observable Markov decision process," European Journal of Operational Research, Elsevier, vol. 281(2), pages 464-474.
    20. Mintz, Yonatan & Aswani, Anil & Kaminsky, Philip & Flowers, Elena & Fukuoka, Yoshimi, 2023. "Behavioral analytics for myopic agents," European Journal of Operational Research, Elsevier, vol. 310(2), pages 793-811.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:31:y:2022:i:11:p:4021-4037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.