IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i4p1213-1247.html
   My bibliography  Save this article

Mean–variance hedging of contingent claims with random maturity

Author

Listed:
  • Kamil Kladívko
  • Mihail Zervos

Abstract

We study the mean–variance hedging of an American‐type contingent claim that is exercised at a random time in a Markovian setting. This problem is motivated by applications in the areas of employee stock option valuation, credit risk, or equity‐linked life insurance policies with an underlying risky asset value guarantee. Our analysis is based on dynamic programming and uses PDE techniques. In particular, we prove that the complete solution to the problem can be expressed in terms of the solution to a system of one quasi‐linear parabolic PDE and two linear parabolic PDEs. Using a suitable iterative scheme involving linear parabolic PDEs and Schauder's interior estimates for parabolic PDEs, we show that each of these PDEs has a classical C1, 2 solution. Using these results, we express the claim's mean–variance hedging value that we derive as its expected discounted payoff with respect to an equivalent martingale measure that does not coincide with the minimal martingale measure, which, in the context that we consider, identifies with the minimum entropy martingale measure as well as the variance‐optimal martingale measure. Furthermore, we present a numerical study that illustrates aspects of our theoretical results.

Suggested Citation

  • Kamil Kladívko & Mihail Zervos, 2023. "Mean–variance hedging of contingent claims with random maturity," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1213-1247, October.
  • Handle: RePEc:bla:mathfi:v:33:y:2023:i:4:p:1213-1247
    DOI: 10.1111/mafi.12411
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12411
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:4:p:1213-1247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.