IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v45y2024i5p823-846.html
   My bibliography  Save this article

Inference in Coarsened Time Series via Generalized Method of Moments

Author

Listed:
  • Man Fai Ip
  • Kin Wai Chan

Abstract

We study statistical inference procedures in coarsened time series through the generalized method of moments. A new model for the coarsened time series via multiple potential outcomes is proposed. It can be naturally extended for inferring multi‐variate coarsened time series. We show that this framework generates a general class of estimators. It neatly generalizes the classical Horvitz–Thompson estimator for handling coarsened time series data. Asymptotic properties, including consistency and limiting distribution, of the proposed estimators are investigated. Estimators of the optimal weight matrix and the long‐run covariance matrix are also derived. In particular, confidence intervals of the mean function of the potential outcome as a function of coarsening index can be constructed. A real‐data application on air quality in the USA is investigated.

Suggested Citation

  • Man Fai Ip & Kin Wai Chan, 2024. "Inference in Coarsened Time Series via Generalized Method of Moments," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(5), pages 823-846, September.
  • Handle: RePEc:bla:jtsera:v:45:y:2024:i:5:p:823-846
    DOI: 10.1111/jtsa.12740
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12740
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
    2. Hall, Alastair R. & Inoue, Atsushi, 2003. "The large sample behaviour of the generalized method of moments estimator in misspecified models," Journal of Econometrics, Elsevier, vol. 114(2), pages 361-394, June.
    3. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Karthika Mohan & Judea Pearl, 2021. "Graphical Models for Processing Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 1023-1037, April.
    6. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    7. Hansen, Lars Peter, 2012. "Proofs for large sample properties of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 325-330.
    8. Schenker, Nathaniel & Raghunathan, Trivellore E. & Chiu, Pei-Lu & Makuc, Diane M. & Zhang, Guangyu & Cohen, Alan J., 2006. "Multiple Imputation of Missing Income Data in the National Health Interview Survey," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 924-933, September.
    9. Wright, Jonathan H., 2003. "Detecting Lack Of Identification In Gmm," Econometric Theory, Cambridge University Press, vol. 19(2), pages 322-330, April.
    10. Javaras, Kristin N. & Van Dyk, David A., 2003. "Multiple Imputation for Incomplete Data With Semicontinuous Variables," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 703-715, January.
    11. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(2), pages 151-175, April.
    12. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    13. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    14. Reiter, Jerome P. & Raghunathan, Trivellore E., 2007. "The Multiple Adaptations of Multiple Imputation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1462-1471, December.
    15. Saraswata Chaudhuri & David K. Guilkey, 2016. "GMM with Multiple Missing Variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 678-706, June.
    16. Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    2. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    3. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    4. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
    5. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    6. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    7. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.
    8. Wayne E. Ferson & Ravi Jagannathan, 1996. "Econometric evaluation of asset pricing models," Staff Report 206, Federal Reserve Bank of Minneapolis.
    9. Richard Smith, 2005. "Weak instruments and empirical likelihood: a discussion of the papers by DWK Andrews and JH Stock and Y Kitamura," CeMMAP working papers CWP13/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Frank Kleibergen & Zhaoguo Zhan, 2025. "Double robust inference for continuous updating GMM," Quantitative Economics, Econometric Society, vol. 16(1), pages 295-327, January.
    11. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    12. Hui Chen & Winston Wei Dou & Leonid Kogan, 2024. "Measuring “Dark Matter” in Asset Pricing Models," Journal of Finance, American Finance Association, vol. 79(2), pages 843-902, April.
    13. Frédérique Bec & Mélika Ben Salem & Emma Ben Youssef, 1997. "An empirical testing of exchange market efficiency hypothesis [Une évaluation empirique de l'efficience du marché deschanges]," Post-Print hal-01851744, HAL.
    14. Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.
    15. Sophocles Mavroeidis, 2006. "Testing the New Keynesian Phillips Curve Without Assuming Identification," Working Papers 2006-13, Brown University, Department of Economics.
    16. Inoue, Atsushi & Rossi, Barbara, 2011. "Testing for weak identification in possibly nonlinear models," Journal of Econometrics, Elsevier, vol. 161(2), pages 246-261, April.
    17. Majid M. Al-Sadoon, 2014. "A general theory of rank testing," Economics Working Papers 1411, Department of Economics and Business, Universitat Pompeu Fabra, revised Feb 2015.
    18. Patrick Fève & François Langot, 1995. "La méthode des moments généralisés et ses extensions : théorie et applications en macro-économie," Économie et Prévision, Programme National Persée, vol. 119(3), pages 139-170.
    19. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    20. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    21. Vasco Gabriel, 2003. "Tests for the Null Hypothesis of Cointegration: A Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 411-435.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:45:y:2024:i:5:p:823-846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.