IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i2p251-278.html
   My bibliography  Save this article

Local Likelihood for non‐parametric ARCH(1) models

Author

Listed:
  • Francesco Audrino

Abstract

. We propose a non‐parametric local likelihood estimator for the log‐transformed autoregressive conditional heteroscedastic (ARCH) (1) model. Our non‐parametric estimator is constructed within the likelihood framework for non‐Gaussian observations: it is different from standard kernel regression smoothing, where the innovations are assumed to be normally distributed. We derive consistency and asymptotic normality for our estimators and show, by a simulation experiment and some real‐data examples, that the local likelihood estimator has better predictive potential than classical local regression. A possible extension of the estimation procedure to more general multiplicative ARCH(p) models with p > 1 predictor variables is also described.

Suggested Citation

  • Francesco Audrino, 2005. "Local Likelihood for non‐parametric ARCH(1) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 251-278, March.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:251-278
    DOI: 10.1111/j.1467-9892.2005.00400.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00400.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00400.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. HÄRDLE, Wolfgang & VIEU, Philippe, 1992. "Kernel regression smoothing of time series," LIDAM Reprints CORE 981, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    3. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    4. Buhlmann, Peter & McNeil, Alexander J., 2002. "An algorithm for nonparametric GARCH modelling," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 665-683, October.
    5. Franke, Jürgen & Holzberger, Harriet & Müller, Marlene, 2002. "Nonparametric estimators of GARCH processes," SFB 373 Discussion Papers 2002,43, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Carroll, Raymond J. & Härdle, Wolfgang & Mammen, Enno, 2002. "Estimation In An Additive Model When The Components Are Linked Parametrically," Econometric Theory, Cambridge University Press, vol. 18(4), pages 886-912, August.
    7. Boente, Graciela & Fraiman, Ricardo, 1989. "Robust nonparametric regression estimation," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 180-198, May.
    8. Wolfgang Härdle & Philippe Vieu, 1992. "Kernel Regression Smoothing Of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(3), pages 209-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670, June.
    2. Arash Nademi & Rahman Farnoosh, 2014. "Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 275-293, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    2. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    3. Ming Chen & Qiongxia Song, 2016. "Semi-parametric estimation and forecasting for exogenous log-GARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 93-112, March.
    4. Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
    5. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    6. Kim, Namhyun & W. Saart, Patrick, 2021. "Estimation in partially linear semiparametric models with parametric and/or nonparametric endogeneity," Cardiff Economics Working Papers E2021/9, Cardiff University, Cardiff Business School, Economics Section.
    7. Federico M Bandi & Valentina Corradi & Daniel Wilhelm, 2016. "Possibly Nonstationary Cross-Validation," CeMMAP working papers 11/16, Institute for Fiscal Studies.
    8. David I. Harvey & Stephen J. Leybourne & Yang Zu, 2024. "Tests for equal forecast accuracy under heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 850-869, August.
    9. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
    10. Yang, Hu & Wu, Xingcui, 2011. "Semiparametric EGARCH model with the case study of China stock market," Economic Modelling, Elsevier, vol. 28(3), pages 761-766.
    11. Jozef Barunik & Lukas Vacha, 2023. "The Dynamic Persistence of Economic Shocks," Papers 2306.01511, arXiv.org.
    12. Yang, Lijian, 2006. "A semiparametric GARCH model for foreign exchange volatility," Journal of Econometrics, Elsevier, vol. 130(2), pages 365-384, February.
    13. Ferreira, Eva & Núñez-Antón, Vicente & Rodríguez-Póo, Juan, 1997. "Kernel regression estimates of growth curves using nonstationary correlated errors," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 413-423, June.
    14. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    15. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    16. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    17. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    18. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    19. HAFNER, Christian & PREMINGER, Arie, 2016. "On Asymptotic Theory for ARCH(infinite) Models," LIDAM Discussion Papers CORE 2016030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Sami MESTIRI, 2022. "Modeling the volatility of Bitcoin returns using Nonparametric GARCH models," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 2-16, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:251-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.