IDEAS home Printed from
   My bibliography  Save this article

Kernel regression estimates of growth curves using nonstationary correlated errors


  • Ferreira, Eva
  • Núñez-Antón, Vicente
  • Rodríguez-Póo, Juan


We study the nonparametric estimation of the average growth curve under a very general parametric form of the covariance structure that allows for monotone transformation of the time scale. We also investigate the properties of optimal bandwidth selection methods and compare the results with those obtained under stationarity.

Suggested Citation

  • Ferreira, Eva & Núñez-Antón, Vicente & Rodríguez-Póo, Juan, 1997. "Kernel regression estimates of growth curves using nonstationary correlated errors," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 413-423, June.
  • Handle: RePEc:eee:stapro:v:34:y:1997:i:4:p:413-423

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hart, Jeffrey D. & Wehrly, Thomas E., 1993. "Consistency of cross-validation when the data are curves," Stochastic Processes and their Applications, Elsevier, vol. 45(2), pages 351-361, April.
    2. Altman, Naomi Simone, 1993. "Estimating error correlation in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 18(3), pages 213-218, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Benhenni, K. & Rachdi, M., 2006. "Nonparametric estimation of the regression function from quantized observations," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3067-3085, July.
    2. Ferreira García, María Eva & Núñez Antón, Vicente Alfredo & Rodríguez Poo, Juan M., 1999. "Two-Stage Nonparametric Regression for Longitudinal Data," BILTOKI 1999-01, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    3. Vicente Núñez-Antón & Juan Rodríguez-Póo & Philippe Vieu, 1999. "Longitudinal data with nonstationary errors: a nonparametric three-stage approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 201-231, June.
    4. Karim Benhenni & Mustapha Rachdi & Yingcai Su, 2013. "The effect of the regularity of the error process on the performance of kernel regression estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 765-781, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:34:y:1997:i:4:p:413-423. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.