IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i2p335-350.html
   My bibliography  Save this article

Future proofing a building design using history matching inspired level‐set techniques

Author

Listed:
  • Evan Baker
  • Peter Challenor
  • Matt Eames

Abstract

How can one design a building that will be sufficiently protected against overheating and sufficiently energy efficient, whilst considering the expected increases in temperature due to climate change? We successfully manage to address this question—greatly reducing a large set of initial candidate building designs down to a small set of acceptable buildings. We do this using a complex computer model, statistical models of said computer model (emulators), and a modification to the history matching calibration technique. This modification tackles the problem of level‐set estimation (rather than calibration), where the goal is to find input settings which lead to the simulated output being below some threshold. The entire procedure allows us to present a practitioner with a set of acceptable building designs, with the final design chosen based on other requirements (subjective or otherwise).

Suggested Citation

  • Evan Baker & Peter Challenor & Matt Eames, 2021. "Future proofing a building design using history matching inspired level‐set techniques," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 335-350, March.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:2:p:335-350
    DOI: 10.1111/rssc.12461
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12461
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Schnieders, Jurgen & Hermelink, Andreas, 2006. "CEPHEUS results: measurements and occupants' satisfaction provide evidence for Passive Houses being an option for sustainable building," Energy Policy, Elsevier, vol. 34(2), pages 151-171, January.
    2. Jeremy Oakley, 2002. "Bayesian inference for the uncertainty distribution of computer model outputs," Biometrika, Biometrika Trust, vol. 89(4), pages 769-784, December.
    3. James M. Salter & Daniel Williamson, 2016. "A comparison of statistical emulation methodologies for multi‐wave calibration of environmental models," Environmetrics, John Wiley & Sons, Ltd., vol. 27(8), pages 507-523, December.
    4. I. Andrianakis & I. Vernon & N. McCreesh & T. J. McKinley & J. E. Oakley & R. N. Nsubuga & M. Goldstein & R. G. White, 2017. "History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 717-740, August.
    5. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    6. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson Samuel E. & Vernon Ian & Liu Junli & Lindsey Keith, 2020. "Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(2), pages 1-33, April.
    2. Gyanendra Pokharel & Rob Deardon, 2022. "Emulation‐based inference for spatial infectious disease transmission models incorporating event time uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 455-479, March.
    3. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    4. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    5. V. J. Roelofs & M. C. Kennedy, 2011. "Sensitivity Analysis and Estimation of Extreme Tail Behavior in Two‐Dimensional Monte Carlo Simulation," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1597-1609, October.
    6. Chaitanya Kaligotla & Jonathan Ozik & Nicholson Collier & Charles M. Macal & Kelly Boyd & Jennifer Makelarski & Elbert S. Huang & Stacy T. Lindau, 2020. "Model Exploration of an Information-Based Healthcare Intervention Using Parallelization and Active Learning," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(4), pages 1-1.
    7. Christopher N Davis & T Deirdre Hollingsworth & Quentin Caudron & Michael A Irvine, 2020. "The use of mixture density networks in the emulation of complex epidemiological individual-based models," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-16, March.
    8. Reichert, P. & White, G. & Bayarri, M.J. & Pitman, E.B., 2011. "Mechanism-based emulation of dynamic simulation models: Concept and application in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1638-1655, April.
    9. SungKu Kang & Ran Jin & Xinwei Deng & Ron S. Kenett, 2023. "Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 415-428, February.
    10. Priscilla Avegliano & Jaime Simão Sichman, 2023. "Equation-Based Versus Agent-Based Models: Why Not Embrace Both for an Efficient Parameter Calibration?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(4), pages 1-3.
    11. Si Chen & Daniel Friedrich & Zhibin Yu & James Yu, 2019. "District Heating Network Demand Prediction Using a Physics-Based Energy Model with a Bayesian Approach for Parameter Calibration," Energies, MDPI, vol. 12(18), pages 1-19, September.
    12. Lorenzo Tomassini & Peter Reichert & Hans R. Künsch & Christoph Buser & Reto Knutti & Mark E. Borsuk, 2009. "A smoothing algorithm for estimating stochastic, continuous time model parameters and its application to a simple climate model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 679-704, December.
    13. Montserrat Fuentes & Peter Guttorp & Peter Challenor, 2003. "Statistical Assessment of Numerical Models," International Statistical Review, International Statistical Institute, vol. 71(2), pages 201-221, August.
    14. Storlie, Curtis B. & Reich, Brian J. & Helton, Jon C. & Swiler, Laura P. & Sallaberry, Cedric J., 2013. "Analysis of computationally demanding models with continuous and categorical inputs," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 30-41.
    15. Yawen Guan & Christian Sampson & J. Derek Tucker & Won Chang & Anirban Mondal & Murali Haran & Deborah Sulsky, 2019. "Computer Model Calibration Based on Image Warping Metrics: An Application for Sea Ice Deformation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 444-463, September.
    16. O’Hagan, A., 2006. "Bayesian analysis of computer code outputs: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1290-1300.
    17. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    18. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    19. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    20. Villez, Kris & Del Giudice, Dario & Neumann, Marc B. & Rieckermann, Jörg, 2020. "Accounting for erroneous model structures in biokinetic process models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:2:p:335-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.