IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i5p679-704.html
   My bibliography  Save this article

A smoothing algorithm for estimating stochastic, continuous time model parameters and its application to a simple climate model

Author

Listed:
  • Lorenzo Tomassini
  • Peter Reichert
  • Hans R. Künsch
  • Christoph Buser
  • Reto Knutti
  • Mark E. Borsuk

Abstract

Summary. Even after careful calibration, the output of deterministic models of environmental systems usually still show systematic deviations from measured data. To analyse possible causes of these discrepancies, we make selected model parameters time variable by treating them as continuous time stochastic processes. This extends an approach that was proposed earlier using discrete time stochastic processes. We present a Markov chain Monte Carlo algorithm for Bayesian estimation of such parameters jointly with the other, constant, parameters of the model. The algorithm consists of Gibbs sampling between constant and time varying parameters by using a Metropolis–Hastings algorithm for each parameter type. For the time varying parameter, we split the overall time period into consecutive intervals of random length, over each of which we use a conditional Ornstein–Uhlenbeck process with fixed end points as the proposal distribution in a Metropolis–Hastings algorithm. The hyperparameters of the stochastic process are selected by using a cross‐validation criterion which maximizes a pseudolikelihood value, for which we have derived a computationally efficient estimator. We tested our algorithm by using a simple climate model. The results show that the algorithm behaves well, is computationally tractable and improves the fit of the model to the data when applied to an additional time‐dependent forcing component. However, this additional forcing term is too large to be a reasonable correction of estimated forcing and it alters the posterior distribution of the other, time constant parameters to unrealistic values. This difficulty, and the impossibility of achieving a good simulation when making other parameters time dependent, indicates a more fundamental, structural deficit of the climate model. This is probably related to the poor resolution of the ocean in the model. Our study demonstrates the technical feasibility of the smoothing technique but also the need for a careful interpretation of the results.

Suggested Citation

  • Lorenzo Tomassini & Peter Reichert & Hans R. Künsch & Christoph Buser & Reto Knutti & Mark E. Borsuk, 2009. "A smoothing algorithm for estimating stochastic, continuous time model parameters and its application to a simple climate model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 679-704, December.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:5:p:679-704
    DOI: 10.1111/j.1467-9876.2009.00678.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00678.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00678.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    2. Jeremy Oakley, 2002. "Bayesian inference for the uncertainty distribution of computer model outputs," Biometrika, Biometrika Trust, vol. 89(4), pages 769-784, December.
    3. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    2. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    3. V. J. Roelofs & M. C. Kennedy, 2011. "Sensitivity Analysis and Estimation of Extreme Tail Behavior in Two‐Dimensional Monte Carlo Simulation," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1597-1609, October.
    4. Reichert, P. & White, G. & Bayarri, M.J. & Pitman, E.B., 2011. "Mechanism-based emulation of dynamic simulation models: Concept and application in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1638-1655, April.
    5. SungKu Kang & Ran Jin & Xinwei Deng & Ron S. Kenett, 2023. "Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 415-428, February.
    6. Evan Baker & Peter Challenor & Matt Eames, 2021. "Future proofing a building design using history matching inspired level‐set techniques," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 335-350, March.
    7. Priscilla Avegliano & Jaime Simão Sichman, 2023. "Equation-Based Versus Agent-Based Models: Why Not Embrace Both for an Efficient Parameter Calibration?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(4), pages 1-3.
    8. Montserrat Fuentes & Peter Guttorp & Peter Challenor, 2003. "Statistical Assessment of Numerical Models," International Statistical Review, International Statistical Institute, vol. 71(2), pages 201-221, August.
    9. Storlie, Curtis B. & Reich, Brian J. & Helton, Jon C. & Swiler, Laura P. & Sallaberry, Cedric J., 2013. "Analysis of computationally demanding models with continuous and categorical inputs," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 30-41.
    10. Yawen Guan & Christian Sampson & J. Derek Tucker & Won Chang & Anirban Mondal & Murali Haran & Deborah Sulsky, 2019. "Computer Model Calibration Based on Image Warping Metrics: An Application for Sea Ice Deformation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 444-463, September.
    11. O’Hagan, A., 2006. "Bayesian analysis of computer code outputs: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1290-1300.
    12. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    13. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    14. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    15. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    16. Enver Yücesan, 1993. "Randomization tests for initialization bias in simulation output," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(5), pages 643-663, August.
    17. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    18. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    19. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    20. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:5:p:679-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.