IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i3p533-542.html
   My bibliography  Save this article

Semiparametric approach to point source modelling in epidemiology and criminology

Author

Listed:
  • Alexandre Rodrigues
  • Peter Diggle
  • Renato Assuncao

Abstract

Summary. By treating the conditional approach that was suggested by Diggle and Rowlingson as a generalized additive model, we provide a semiparametric method for point process modelling with point source interventions. We illustrate the flexibility of this approach with two applications. The first is a reanalysis of an epidemiological case–control data set in which we compare the semiparametric fit with a previously reported parametric model. The second is an application to a complex intervention in the Brazilian city of Belo Horizonte, in which we show how the installation of 60 closed‐circuit television cameras has changed the spatial distribution of crimes within an area of high criminal activity.

Suggested Citation

  • Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:3:p:533-542
    DOI: 10.1111/j.1467-9876.2009.00708.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00708.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00708.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Diggle, 1990. "A Point Process Modelling Approach to Raised Incidence of a Rare Phenomenon in the Vicinity of a Prespecified Point," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 153(3), pages 349-362, May.
    2. Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
    3. Peter Diggle & Sara Morris & Paul Elliott & Gavin Shaddick, 1997. "Regression Modelling of Disease Risk in Relation to Point Sources," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 491-505, September.
    4. Peter Diggle & Pingping Zheng & Peter Durr, 2005. "Nonparametric estimation of spatial segregation in a multivariate point process: bovine tuberculosis in Cornwall, UK," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 645-658, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvaro Briz‐Redón & Jorge Mateu & Francisco Montes, 2022. "Identifying crime generators and spatially overlapping high‐risk areas through a nonlinear model: A comparison between three cities of the Valencian region (Spain)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 97-120, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
    2. Álvaro Briz‐Redón & Jorge Mateu & Francisco Montes, 2022. "Identifying crime generators and spatially overlapping high‐risk areas through a nonlinear model: A comparison between three cities of the Valencian region (Spain)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 97-120, February.
    3. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    4. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    5. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    6. M�rcio Poletti Laurini, 2014. "Dynamic functional data analysis with non-parametric state space models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 142-163, January.
    7. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    8. Erin E. Gabriel & Michael J. Daniels & M. Elizabeth Halloran, 2016. "Comparing biomarkers as trial level general surrogates," Biometrics, The International Biometric Society, vol. 72(4), pages 1046-1054, December.
    9. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.
    10. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    11. Nels G. Johnson & Inyoung Kim, 2019. "Semiparametric approaches for matched case–control studies with error-in-covariates," Computational Statistics, Springer, vol. 34(4), pages 1675-1692, December.
    12. Martin L. Hazelton & Tilman M. Davies, 2022. "Pointwise comparison of two multivariate density functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1791-1810, December.
    13. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    14. Esra Kürüm & Danh V. Nguyen & Qi Qian & Sudipto Banerjee & Connie M. Rhee & Damla Şentürk, 2024. "Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 827-852, October.
    15. Gutiérrez, Luis & Gutiérrez-Peña, Eduardo & Mena, Ramsés H., 2014. "Bayesian nonparametric classification for spectroscopy data," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 56-68.
    16. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
    17. A C Gatrell & C E Dunn & P J Boyle, 1991. "The Relative Utility of the Central Postcode Directory and Pinpoint Address Code in Applications of Geographical Information Systems," Environment and Planning A, , vol. 23(10), pages 1447-1458, October.
    18. Choudhary, Pankaj K., 2007. "Semiparametric regression for assessing agreement using tolerance bands," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6229-6241, August.
    19. Davies, Tilman M. & Jones, Khair & Hazelton, Martin L., 2016. "Symmetric adaptive smoothing regimens for estimation of the spatial relative risk function," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 12-28.
    20. Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:3:p:533-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.