Comparing biomarkers as trial level general surrogates
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.12513
Download full text from publisher
References listed on IDEAS
- Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
- Ariel Alonso & Wim Van der Elst & Geert Molenberghs & Marc Buyse & Tomasz Burzykowski, 2015. "On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints," Biometrics, The International Biometric Society, vol. 71(1), pages 15-24, March.
- Tomasz Burzykowski & Geert Molenberghs & Marc Buyse & Helena Geys & Didier Renard, 2001. "Validation of surrogate end points in multiple randomized clinical trials with failure time end points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 405-422.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
- Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
- M�rcio Poletti Laurini, 2014.
"Dynamic functional data analysis with non-parametric state space models,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 142-163, January.
- Márcio Laurini, 2012. "Dynamic Functional Data Analysis with Nonparametric State Space Models," IBMEC RJ Economics Discussion Papers 2012-01, Economics Research Group, IBMEC Business School - Rio de Janeiro.
- O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
- Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
- Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017.
"Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data,"
Working Papers
2017011, The University of Sheffield, Department of Economics.
- Brown, Sarah & Ghosh, Pulak & Pareek, Bhuvanesh & Taylor, Karl, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," IZA Discussion Papers 10910, Institute of Labor Economics (IZA).
- Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
- Nels G. Johnson & Inyoung Kim, 2019. "Semiparametric approaches for matched case–control studies with error-in-covariates," Computational Statistics, Springer, vol. 34(4), pages 1675-1692, December.
- Esra Kürüm & Danh V. Nguyen & Qi Qian & Sudipto Banerjee & Connie M. Rhee & Damla Şentürk, 2024. "Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 827-852, October.
- Gutiérrez, Luis & Gutiérrez-Peña, Eduardo & Mena, Ramsés H., 2014. "Bayesian nonparametric classification for spectroscopy data," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 56-68.
- Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
- Choudhary, Pankaj K., 2007. "Semiparametric regression for assessing agreement using tolerance bands," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6229-6241, August.
- Casimir Ledoux Sofeu & Virginie Rondeau, 2020. "How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-25, January.
- Ariel Alonso & Helena Geys & Geert Molenberghs & Michael G. Kenward & Tony Vangeneugden, 2004. "Validation of Surrogate Markers in Multiple Randomized Clinical Trials with Repeated Measurements: Canonical Correlation Approach," Biometrics, The International Biometric Society, vol. 60(4), pages 845-853, December.
- Lindsay A. Renfro & Bradley P. Carlin & Daniel J. Sargent, 2012. "Bayesian Adaptive Trial Design for a Newly Validated Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(1), pages 258-267, March.
- Xiaoyun Li & Cong Chen & Wen Li, 2018. "Adaptive Biomarker Population Selection in Phase III Confirmatory Trials with Time-to-Event Endpoints," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 324-341, August.
- Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
- Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.
- Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1046-1054. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.