IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i4p505-524.html
   My bibliography  Save this article

Identification of multivariate responders and non‐responders by using Bayesian growth curve latent class models

Author

Listed:
  • Benjamin E. Leiby
  • Mary D. Sammel
  • Thomas R. Ten Have
  • Kevin G. Lynch

Abstract

Summary. We propose a multivariate growth curve mixture model that groups subjects on the basis of multiple symptoms measured repeatedly over time. Our model synthesizes features of two models. First, we follow Roy and Lin in relating the multiple symptoms at each time point to a single latent variable. Second, we use the growth mixture model of Muthén and Shedden to group subjects on the basis of distinctive longitudinal profiles of this latent variable. The mean growth curve for the latent variable in each class defines that class's features. For example, a class of ‘responders’ would have a decline in the latent symptom summary variable over time. A Bayesian approach to estimation is employed where the methods of Elliott and co‐workers are extended to estimate simultaneously the posterior distributions of the parameters from the latent variable and growth curve mixture portions of the model. We apply our model to data from a randomized clinical trial evaluating the efficacy of bacillus Calmette–Guerin in treating symptoms of interstitial cystitis. In contrast with conventional approaches using a single subjective global response assessment, we use the multivariate symptom data to identify a class of subjects where treatment demonstrates effectiveness. Simulations are used to confirm identifiability results and to evaluate the performance of our algorithm.

Suggested Citation

  • Benjamin E. Leiby & Mary D. Sammel & Thomas R. Ten Have & Kevin G. Lynch, 2009. "Identification of multivariate responders and non‐responders by using Bayesian growth curve latent class models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 505-524, September.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:505-524
    DOI: 10.1111/j.1467-9876.2009.00663.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00663.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00663.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    3. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    4. Elizabeth S. Garrett & Scott L. Zeger, 2000. "Latent Class Model Diagnosis," Biometrics, The International Biometric Society, vol. 56(4), pages 1055-1067, December.
    5. Jason Roy & Xihong Lin, 2000. "Latent Variable Models for Longitudinal Data with Multiple Continuous Outcomes," Biometrics, The International Biometric Society, vol. 56(4), pages 1047-1054, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satoshi Usami & Ross Jacobucci & Timothy Hayes, 2019. "The performance of latent growth curve model-based structural equation model trees to uncover population heterogeneity in growth trajectories," Computational Statistics, Springer, vol. 34(1), pages 1-22, March.
    2. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bei Jiang & Michael R. Elliott & Mary D. Sammel & Naisyin Wang, 2015. "Joint modeling of cross-sectional health outcomes and longitudinal predictors via mixtures of means and variances," Biometrics, The International Biometric Society, vol. 71(2), pages 487-497, June.
    2. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.
    3. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    4. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    5. Christopher H. Morrell & Larry J. Brant & Shan Sheng & E. Jeffrey Metter, 2012. "Screening for prostate cancer using multivariate mixed-effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1151-1175, November.
    6. Marco, Nicholas & Şentürk, Damla & Jeste, Shafali & DiStefano, Charlotte C. & Dickinson, Abigail & Telesca, Donatello, 2024. "Flexible regularized estimation in high-dimensional mixed membership models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    7. Royce Anders & William Batchelder, 2015. "Cultural Consensus Theory for the Ordinal Data Case," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 151-181, March.
    8. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    9. Lubrano, Michel & Ndoye, Abdoul Aziz Junior, 2016. "Income inequality decomposition using a finite mixture of log-normal distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 830-846.
    10. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    11. Terrance Savitsky & Daniel McCaffrey, 2014. "Bayesian Hierarchical Multivariate Formulation with Factor Analysis for Nested Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 275-302, April.
    12. Mahdiyeh, Zahra & Kazemi, Iraj, 2019. "An innovative strategy on the construction of multivariate multimodal linear mixed-effects models," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    13. Jia-Chiun Pan & Guan-Hua Huang, 2014. "Bayesian Inferences of Latent Class Models with an Unknown Number of Classes," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 621-646, October.
    14. Hui, Francis K.C., 2017. "Model-based simultaneous clustering and ordination of multivariate abundance data in ecology," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 1-10.
    15. Gilles Celeux & Florence Forbes & Christian P, Robert & Michael Titterington, 2003. "Deviance Information Criteria for Missing Data Models," Working Papers 2003-30, Center for Research in Economics and Statistics.
    16. Chia-Yi Chiu & Yan Sun & Yanhong Bian, 2018. "Cognitive Diagnosis for Small Educational Programs: The General Nonparametric Classification Method," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 355-375, June.
    17. Oliver J. Rutz & Garrett P. Sonnier, 2019. "VANISH regularization for generalized linear models," Quantitative Marketing and Economics (QME), Springer, vol. 17(4), pages 415-437, December.
    18. Jing Huang & Ying Yuan & David Wetter, 2019. "Latent Class Dynamic Mediation Model with Application to Smoking Cessation Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 1-18, March.
    19. Shotwell Matthew S & Slate Elizabeth H, 2010. "Bayesian Modeling of Footrace Finishing Times," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-21, July.
    20. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:505-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.