IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i2p247-266.html
   My bibliography  Save this article

Towards automating model selection for a mark–recapture–recovery analysis

Author

Listed:
  • S. A. Sisson
  • Y. Fan

Abstract

Summary. Methods for fitting models to mark–recapture–recovery studies are now well established in the literature. Classical model selection methods for identifying those models which best represent the population under investigation are perhaps less satisfactory. One class of methods implements manual model searches on a model space that is restricted by strong physical understandings of the biological plausibility of each model. This can lead to highly subjective analyses requiring a priori expert knowledge, which are slow to implement and can be error prone. More automated search algorithms are now available and can be implemented with ease to consider larger classes of models. We investigate the utility of such automated algorithms and consider in particular the situation where there is a large set of near optimal models according to the model ranking function. We present a modification of an automated search procedure on an unrestricted model space and propose a procedure for model selection in the absence of a single clear optimal model. We investigate this approach through a classical mark–recapture–recovery analysis of a red deer population from the island of Rùm and conduct an investigation into senesence, which is theorized to occur in wild animal populations.

Suggested Citation

  • S. A. Sisson & Y. Fan, 2009. "Towards automating model selection for a mark–recapture–recovery analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 247-266, May.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:2:p:247-266
    DOI: 10.1111/j.1467-9876.2008.00656.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2008.00656.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2008.00656.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. King & S. P. Brooks, 2002. "Model Selection for Integrated Recovery/Recapture Data," Biometrics, The International Biometric Society, vol. 58(4), pages 841-851, December.
    2. S. P. Brooks & N. Friel & R. King, 2003. "Classical model selection via simulated annealing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 503-520, May.
    3. R. King, 2003. "Closed-form likelihoods for Arnason--Schwarz models," Biometrika, Biometrika Trust, vol. 90(2), pages 435-444, June.
    4. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    5. E. A. Catchpole & B. J. T. Morgan & T. N. Coulson & S. N. Freeman & S. D. Albon, 2000. "Factors influencing Soay sheep survival," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 453-472.
    6. Sisson, Scott A., 2005. "Transdimensional Markov Chains: A Decade of Progress and Future Perspectives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1077-1089, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. King & S. P. Brooks & B. J. T. Morgan & T. Coulson, 2006. "Factors Influencing Soay Sheep Survival: A Bayesian Analysis," Biometrics, The International Biometric Society, vol. 62(1), pages 211-220, March.
    2. Diana J. Cole, 2019. "Parameter redundancy and identifiability in hidden Markov models," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 105-118, August.
    3. repec:plo:pone00:0178915 is not listed on IDEAS
    4. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    5. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    6. Jaewoong Yun, 2023. "Strategies for Improving the Sustainability of Fare-Free Policy for the Elderly through Preferences by Travel Modes," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    7. Malerba, Martino E. & Connolly, Sean R. & Heimann, Kirsten, 2015. "An experimentally validated nitrate–ammonium–phytoplankton model including effects of starvation length and ammonium inhibition on nitrate uptake," Ecological Modelling, Elsevier, vol. 317(C), pages 30-40.
    8. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    9. Ignacio Lozano-Espitia & Alexander Guarín-López, 2015. "Fragilidad bancaria en Colombia: un análisis basado en las hojas de balance," Chapters, in: Jose E. Gomez-Gonzalez & Jair N. Ojeda-Joya (ed.), Política monetaria y estabilidad financiera en economías pequeñas y abiertas, chapter 10, pages 301-338, Banco de la Republica de Colombia.
    10. Friederike Paetz, 2016. "Persönlichkeitsmerkmale als Segmentierungsvariablen: Eine empirische Studie [Personality traits for market segmentation: An empirical study]," Schmalenbach Journal of Business Research, Springer, vol. 68(3), pages 279-306, August.
    11. Rosbergen, Edward & Wedel, Michel & Pieters, Rik, 1997. "Analyzing visual attention tot repeated print advertising using scanpath theory," Research Report 97B32, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    12. Nalan Basturk & Richard Paap & Dick van Dijk, 2008. "Structural Differences in Economic Growth," Tinbergen Institute Discussion Papers 08-085/4, Tinbergen Institute.
    13. Golob, Thomas F. & Regan, A C, 2002. "Trucking Industry Preferences for Driver Traveler Information Using Wireless Internet-enabled Devices," University of California Transportation Center, Working Papers qt40q8h6sf, University of California Transportation Center.
    14. Golob, Thomas F. & Regan, A C, 2003. "Traffic Congestion and Trucking Managers' Use of Automated Routing and Scheduling," University of California Transportation Center, Working Papers qt74z234n4, University of California Transportation Center.
    15. McCrea, R.S., 2012. "Sufficient statistic likelihood construction for age- and time-dependent multi-state joint recapture and recovery data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 357-359.
    16. Naiara Escalante Mateos & Eider Goñi Palacios & Arantza Fernández-Zabala & Iratxe Antonio-Agirre, 2020. "Internal Structure, Reliability and Invariance across Gender Using the Multidimensional School Climate Scale PACE-33," IJERPH, MDPI, vol. 17(13), pages 1-24, July.
    17. Chen, Langnan & Luo, Jiawen & Liu, Hao, 2013. "The determinants of liquidity with G-RJMCMC-VS model: Evidence from China," Economic Modelling, Elsevier, vol. 35(C), pages 192-198.
    18. Lee, Jaehyung & Lee, Euntak & Yun, Jaewoong & Chung, Jin-Hyuk & Kim, Jinhee, 2021. "Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance," Journal of Transport Geography, Elsevier, vol. 94(C).
    19. Jung, Hyekyung & Schafer, Joseph L. & Seo, Byungtae, 2011. "A latent class selection model for nonignorably missing data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 802-812, January.
    20. Emmanuel Afuecheta & Idika E. Okorie & Saralees Nadarajah & Geraldine E. Nzeribe, 2024. "Forecasting Value at Risk and Expected Shortfall of Foreign Exchange Rate Volatility of Major African Currencies via GARCH and Dynamic Conditional Correlation Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 271-304, January.
    21. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:2:p:247-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.