IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i5p797-815.html
   My bibliography  Save this article

Measurement error modelling with an approximate instrumental variable

Author

Listed:
  • Paul Gustafson

Abstract

Summary. Consider using regression modelling to relate an exposure (predictor) variable to a disease outcome (response) variable. If the exposure variable is measured with error, but this error is ignored in the analysis, then misleading inferences can result. This problem is well known and has spawned a large literature on methods which adjust for measurement error in predictor variables. One theme is that the requisite assumptions about the nature of the measurement error can be stronger than what is actually known in many practical situations. In particular, the assumptions that are required to yield a model which is formally identified from the observable data can be quite strong. The paper deals with one particular strategy for measurement error modelling, namely that of seeking an instrumental variable, i.e. a covariate S which is associated with exposure and conditionally independent of the outcome given exposure. If these two conditions hold exactly, then we call S an exact instrumental variable, and an identified model results. However, the second is not checkable empirically, since the actual exposure is unobserved. In practice then, investigators typically seek a covariate which is plausibly thought to satisfy it. We study inferences which acknowledge the approximate nature of this assumption. In particular, we consider Bayesian inference with a prior distribution that posits that S is probably close to conditionally independent of outcome given exposure. We refer to this as an approximate instrumental variable assumption. Although the approximate instrumental variable assumption is more realistic for most applications, concern arises that a non‐identified model may result. Thus the paper contrasts inferences arising from the approximate instrumental variable assumption with their exact instrumental variable counterparts, with particular emphasis on the benefit of basing inferences on a more realistic model versus the cost of basing inferences on a non‐identified model.

Suggested Citation

  • Paul Gustafson, 2007. "Measurement error modelling with an approximate instrumental variable," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 797-815, November.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:5:p:797-815
    DOI: 10.1111/j.1467-9868.2007.00611.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00611.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00611.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    2. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    4. Nandini Dendukuri & Elham Rahme & Patrick Bélisle & Lawrence Joseph, 2004. "Bayesian Sample Size Determination for Prevalence and Diagnostic Test Studies in the Absence of a Gold Standard Test," Biometrics, The International Biometric Society, vol. 60(2), pages 388-397, June.
    5. Poirier, Dale J., 1998. "Revising Beliefs In Nonidentified Models," Econometric Theory, Cambridge University Press, vol. 14(4), pages 483-509, August.
    6. Daniel O. Scharfstein & Charles F. Manski & James C. Anthony, 2004. "On the Construction of Bounds in Prospective Studies with Missing Ordinal Outcomes: Application to the Good Behavior Game Trial," Biometrics, The International Biometric Society, vol. 60(1), pages 154-164, March.
    7. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
    8. Raymond J. Carroll & David Ruppert & Ciprian M. Crainiceanu & Tor D. Tosteson & Margaret R. Karagas, 2004. "Nonlinear and Nonparametric Regression and Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 736-750, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Guowang & Wu, Mixia & Pang, Zhen, 2022. "Estimation of spatial autoregressive models with covariate measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Jiang, Wenxin, 2017. "On limiting distribution of quasi-posteriors under partial identification," Econometrics and Statistics, Elsevier, vol. 3(C), pages 60-72.
    3. Gustafson Paul, 2010. "Bayesian Inference for Partially Identified Models," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.
    2. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    3. Chuanming Gao & Kajal Lahiri, 2000. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometric Society World Congress 2000 Contributed Papers 0230, Econometric Society.
    4. Pablo A. Guerrón-Quintana & James M. Nason, 2013. "Bayesian estimation of DSGE models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 21, pages 486-512, Edward Elgar Publishing.
    5. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    6. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    7. Radchenko, Stanislav & Tsurumi, Hiroki, 2006. "Limited information Bayesian analysis of a simultaneous equation with an autocorrelated error term and its application to the U.S. gasoline market," Journal of Econometrics, Elsevier, vol. 133(1), pages 31-49, July.
    8. Lawrence Kessler & Murat Munkin, 2015. "Bayesian estimation of panel data fractional response models with endogeneity: an application to standardized test rates," Empirical Economics, Springer, vol. 49(1), pages 81-114, August.
    9. Andros Kourtellos & Alex Lenkoski & Kyriakos Petrou, 2017. "Measuring the Strength of the Theories of Government Size," University of Cyprus Working Papers in Economics 11-2017, University of Cyprus Department of Economics.
    10. Ruge-Murcia, Francisco J., 2007. "Methods to estimate dynamic stochastic general equilibrium models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2599-2636, August.
    11. Dale J. Poirier & Gary Koop & Justin Tobias, 2005. "Semiparametric Bayesian inference in multiple equation models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(6), pages 723-747.
    12. Paul Gustafson & Sander Greenland, 2006. "The Performance of Random Coefficient Regression in Accounting for Residual Confounding," Biometrics, The International Biometric Society, vol. 62(3), pages 760-768, September.
    13. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    14. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
    15. D. Todem & J. Fine & L. Peng, 2010. "A Global Sensitivity Test for Evaluating Statistical Hypotheses with Nonidentifiable Models," Biometrics, The International Biometric Society, vol. 66(2), pages 558-566, June.
    16. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    17. Kleibergen, Frank, 2004. "Invariant Bayesian inference in regression models that is robust against the Jeffreys-Lindley's paradox," Journal of Econometrics, Elsevier, vol. 123(2), pages 227-258, December.
    18. Frank Kleibergen & Richard Kleijn & Richard Paap, 2000. "The Bayesian Score Statistic," Tinbergen Institute Discussion Papers 00-035/4, Tinbergen Institute.
    19. Paul Gustafson, 2006. "Sample size implications when biases are modelled rather than ignored," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 865-881, October.
    20. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:5:p:797-815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.