IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i4p1849-1854.html
   My bibliography  Save this article

Jiang, Zhao and Shao's reply to the Discussion of ‘The First Discussion Meeting on Statistical Aspects of the Covid‐19 Pandemic’

Author

Listed:
  • Feiyu Jiang
  • Zifeng Zhao
  • Xiaofeng Shao

Abstract

No abstract is available for this item.

Suggested Citation

  • Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2022. "Jiang, Zhao and Shao's reply to the Discussion of ‘The First Discussion Meeting on Statistical Aspects of the Covid‐19 Pandemic’," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1849-1854, October.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:4:p:1849-1854
    DOI: 10.1111/rssa.12940
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12940
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    2. Huixia Judy Wang & Deyuan Li & Xuming He, 2012. "Estimation of High Conditional Quantiles for Heavy-Tailed Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1453-1464, December.
    3. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
    4. Huixia Judy Wang & Deyuan Li, 2013. "Estimation of Extreme Conditional Quantiles Through Power Transformation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1062-1074, September.
    5. Chenxi Li & Ying Wei & Rick Chappell & Xuming He, 2011. "Bent Line Quantile Regression with Application to an Allometric Study of Land Mammals' Speed and Mass," Biometrics, The International Biometric Society, vol. 67(1), pages 242-249, March.
    6. Zhao, Zhibiao & Xiao, Zhijie, 2014. "Efficient Regressions Via Optimally Combining Quantile Information," Econometric Theory, Cambridge University Press, vol. 30(6), pages 1272-1314, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    2. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    3. Liwen Zhang & Huixia Judy Wang & Zhongyi Zhu, 2017. "Composite change point estimation for bent line quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 145-168, February.
    4. Sottile, Gianluca & Frumento, Paolo, 2022. "Robust estimation and regression with parametric quantile functions," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    5. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    6. He, Fengyang & Wang, Huixia Judy & Zhou, Yuejin, 2022. "Extremal quantile autoregression for heavy-tailed time series," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    7. Tang, Yanlin & Song, Xinyuan & Zhu, Zhongyi, 2015. "Threshold effect test in censored quantile regression," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 149-156.
    8. Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
    9. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    10. Chuang Wan & Wei Zhong & Wenyang Zhang & Changliang Zou, 2023. "Multikink quantile regression for longitudinal data with application to progesterone data analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 747-760, June.
    11. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    12. Seonjin Kim, 2015. "Hypothesis Testing For Arch Models: A Multiple Quantile Regressions Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 26-38, January.
    13. Li, Zheng & Zeng, Jingjing & Hensher, David A., 2023. "An efficient approach to structural breaks and the case of automobile gasoline consumption in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    14. Stéphane Girard & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2021. "Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models," Post-Print hal-03306230, HAL.
    15. Cho, Hyunkeun & Kim, Seonjin & Kim, Mi-Ok, 2017. "Multiple quantile regression analysis of longitudinal data: Heteroscedasticity and efficient estimation," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 334-343.
    16. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    17. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    18. Long Feng & Changliang Zou & Zhaojun Wang & Lixing Zhu, 2015. "Robust comparison of regression curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 185-204, March.
    19. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    20. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:4:p:1849-1854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.