IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v206y2025ics0167947325000040.html
   My bibliography  Save this article

Extremal local linear quantile regression for nonlinear dependent processes

Author

Listed:
  • He, Fengyang
  • Wang, Huixia Judy

Abstract

Estimating extreme conditional quantiles accurately in the presence of data sparsity in the tails is a challenging and important problem. While there is existing literature on quantile analysis, limited work has been done on capturing nonlinear relationships in dependent data structures for extreme quantile estimation. They propose a novel estimation procedure that combines the local linear quantile regression method and extreme value theory. They develop a new enhanced Hill estimator for the conditional extreme value index, constructed based on the local linear quantile estimators at a sequence of quantile levels. That approach allows for data-adaptive weights assigned to different quantiles, providing flexibility and potential for enhancing estimation efficiency. Furthermore, they propose an estimator for extreme conditional quantiles by extrapolating from the intermediate quantiles. Their methodology enables both point and interval estimation of extreme conditional quantiles for processes with an α-mixing dependence structure. They derive the Bahadur representation of the intermediate quantile estimators within the local linear extreme-quantile framework and establish the asymptotic properties of their proposed estimators. Simulation studies and real data analysis are conducted to demonstrate the effectiveness and performance of their methods.

Suggested Citation

  • He, Fengyang & Wang, Huixia Judy, 2025. "Extremal local linear quantile regression for nonlinear dependent processes," Computational Statistics & Data Analysis, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:csdana:v:206:y:2025:i:c:s0167947325000040
    DOI: 10.1016/j.csda.2025.108128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000040
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. He, Fengyang & Cheng, Yebin & Tong, Tiejun, 2016. "Estimation of extreme conditional quantiles through an extrapolation of intermediate regression quantiles," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 30-37.
    2. Huixia Judy Wang & Deyuan Li & Xuming He, 2012. "Estimation of High Conditional Quantiles for Heavy-Tailed Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1453-1464, December.
    3. Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
    4. Chavez-Demoulin, Valérie & Guillou, Armelle, 2018. "Extreme quantile estimation for β-mixing time series and applications," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 59-74.
    5. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Laurens Haan & Cécile Mercadier & Chen Zhou, 2016. "Adapting extreme value statistics to financial time series: dealing with bias and serial dependence," Finance and Stochastics, Springer, vol. 20(2), pages 321-354, April.
    7. Degui Li & Qi Li & Zheng Li, 2021. "Nonparametric Quantile Regression Estimation With Mixed Discrete and Continuous Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 741-756, July.
    8. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    9. Huixia Judy Wang & Deyuan Li, 2013. "Estimation of Extreme Conditional Quantiles Through Power Transformation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1062-1074, September.
    10. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    11. Gardes, Laurent & Girard, Stéphane & Lekina, Alexandre, 2010. "Functional nonparametric estimation of conditional extreme quantiles," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 419-433, February.
    12. Abdelaati Daouia & Laurent Gardes & Stéphane Girard & Alexandre Lekina, 2011. "Kernel estimators of extreme level curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 311-333, August.
    13. Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Local linear spatial regression," ULB Institutional Repository 2013/2131, ULB -- Universite Libre de Bruxelles.
    14. Wang, Hansheng & Tsai, Chih-Ling, 2009. "Tail Index Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1233-1240.
    15. He, Fengyang & Wang, Huixia Judy & Zhou, Yuejin, 2022. "Extremal quantile autoregression for heavy-tailed time series," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuma Yoshida, 2021. "Additive models for extremal quantile regression with Pareto-type distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(1), pages 103-134, March.
    2. He, Fengyang & Wang, Huixia Judy & Zhou, Yuejin, 2022. "Extremal quantile autoregression for heavy-tailed time series," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    3. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2014. "Local robust and asymptotically unbiased estimation of conditional Pareto-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 330-355, June.
    4. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Inference for extremal regression with dependent heavy-tailed data," TSE Working Papers 22-1324, Toulouse School of Economics (TSE), revised 29 Aug 2023.
    5. Daisuke Kurisu & Taisuke Otsu, 2021. "Nonparametric inference for extremal conditional quantiles," STICERD - Econometrics Paper Series 616, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Yuya Sasaki & Yulong Wang, 2022. "Fixed-k Inference for Conditional Extremal Quantiles," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 829-837, April.
    7. Stéphane Girard & Gilles Claude Stupfler & Antoine Usseglio-Carleve, 2021. "Extreme Conditional Expectile Estimation in Heavy-Tailed Heteroscedastic Regression Models," Post-Print hal-03306230, HAL.
    8. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    9. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    10. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    11. Yuri Goegebeur & Armelle Guillou & Théo Rietsch, 2015. "Robust conditional Weibull-type estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 479-514, June.
    12. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Kurisu, Daisuke & Otsu, Taisuke, 2023. "Subsampling inference for nonparametric extremal conditional quantiles," LSE Research Online Documents on Economics 120365, London School of Economics and Political Science, LSE Library.
    14. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Stupfler, Gilles, 2016. "Estimating the conditional extreme-value index under random right-censoring," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 1-24.
    16. Zhang, Qingzhao & Li, Deyuan & Wang, Hansheng, 2013. "A note on tail dependence regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 163-172.
    17. Ma, Yaolan & Jiang, Yuexiang & Huang, Wei, 2018. "Empirical likelihood based inference for conditional Pareto-type tail index," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 114-121.
    18. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.
    19. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    20. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:206:y:2025:i:c:s0167947325000040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.