IDEAS home Printed from
   My bibliography  Save this article

Hypothesis Testing For Arch Models: A Multiple Quantile Regressions Approach


  • Seonjin Kim


type="main" xml:id="jtsa12089-abs-0001"> We propose a quantile regression-based test to detect the presence of autoregressive conditional heteroscedasticity by combining distributional information across multiple quantiles. A chi-square-type test statistic based on the weighted average of distinct regression quantile estimators is formed. Unlike the widely used likelihood-based tests, the proposed test does not make any distributional assumptions on the underlying errors. Monte Carlo simulation studies show that the proposed test outperforms the likelihood-based tests in several aspects.

Suggested Citation

  • Seonjin Kim, 2015. "Hypothesis Testing For Arch Models: A Multiple Quantile Regressions Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 26-38, January.
  • Handle: RePEc:bla:jtsera:v:36:y:2015:i:1:p:26-38

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Xiao, Zhijie & Koenker, Roger, 2009. "Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1696-1712.
    4. Koenker, Roger, 1984. "A note on L-estimates for linear models," Statistics & Probability Letters, Elsevier, vol. 2(6), pages 323-325, December.
    5. Hong, Yongmiao & Shehadeh, Ramsey D, 1999. "A New Test for ARCH Effects and Its Finite-Sample Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 91-108, January.
    6. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
    7. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
    8. Zhao, Zhibiao & Xiao, Zhijie, 2014. "Efficient Regressions Via Optimally Combining Quantile Information," Econometric Theory, Cambridge University Press, vol. 30(6), pages 1272-1314, December.
    9. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:36:y:2015:i:1:p:26-38. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.