IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i2p640-676.html
   My bibliography  Save this article

On the reliability of multiple systems estimation for the quantification of modern slavery

Author

Listed:
  • Olivier Binette
  • Rebecca C. Steorts

Abstract

The quantification of modern slavery has received increased attention recently as organizations have come together to produce global estimates, where multiple systems estimation (MSE) is often used to this end. Echoing a long‐standing controversy, disagreements have re‐surfaced regarding the underlying MSE assumptions, the robustness of MSE methodology and the accuracy of MSE estimates in this application. Our goal was to help address and move past these controversies. To do so, we review MSE, its assumptions, and commonly used models for modern slavery applications. We introduce all of the publicly available modern slavery datasets in the literature, providing a reproducible analysis and highlighting current issues. Specifically, we utilize an internal consistency approach that constructs subsets of data for which ground truth is available, allowing us to evaluate the accuracy of MSE estimators. Next, we propose a characterization of the large sample bias of estimators as a function of misspecified assumptions. Then, we propose an alternative to traditional (e.g. bootstrap‐based) assessments of reliability, which allows us to visualize trajectories of MSE estimates to illustrate the robustness of estimates. Finally, our complementary analyses are used to provide guidance regarding the application and reliability of MSE methodology.

Suggested Citation

  • Olivier Binette & Rebecca C. Steorts, 2022. "On the reliability of multiple systems estimation for the quantification of modern slavery," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 640-676, April.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:2:p:640-676
    DOI: 10.1111/rssa.12803
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12803
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernard W. Silverman, 2020. "Multiple‐systems analysis for the quantification of modern slavery: classical and Bayesian approaches," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 691-736, June.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Baillargeon, Sophie & Rivest, Louis-Paul, 2007. "Rcapture: Loglinear Models for Capture-Recapture in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i05).
    4. Overstall, Antony M. & King, Ruth, 2014. "conting: An R Package for Bayesian Analysis of Complete and Incomplete Contingency Tables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i07).
    5. Kristian Lum & Megan Emily Price & David Banks, 2013. "Applications of Multiple Systems Estimation in Human Rights Research," The American Statistician, Taylor & Francis Journals, vol. 67(4), pages 191-200, November.
    6. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    7. Wen-Han Hwang & Richard Huggins, 2005. "An examination of the effect of heterogeneity on the estimation of population size using capture-recapture data," Biometrika, Biometrika Trust, vol. 92(1), pages 229-233, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Edward Jackson & Brian Francis, 2025. "The use of multiple systems estimation to estimate the number of unattributed paintings by Modigliani," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(1), pages 21-37, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    2. Eleonora Mussino & Bruno Santos & Andrea Monti & Eleni Matechou & Sven Drefahl, 2024. "Multiple systems estimation for studying over-coverage and its heterogeneity in population registers," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5033-5056, December.
    3. Daniel Manrique‐Vallier, 2016. "Bayesian population size estimation using Dirichlet process mixtures," Biometrics, The International Biometric Society, vol. 72(4), pages 1246-1254, December.
    4. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    5. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.
    6. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    7. Chang Xuan Mao & Ruochen Huang & Sijia Zhang, 2017. "Petersen estimator, Chapman adjustment, list effects, and heterogeneity," Biometrics, The International Biometric Society, vol. 73(1), pages 167-173, March.
    8. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    9. Cappelen, Alexander W. & Sørensen, Erik Ø. & Tungodden, Bertil & Xu, Xiaogeng, 2025. "Risk taking on behalf of others: Does the timing of uncertainty revelation matter?," Discussion Paper Series in Economics 13/2025, Norwegian School of Economics, Department of Economics.
    10. Jose Pina-Sánchez & John Paul Gosling, 2020. "Tackling selection bias in sentencing data analysis: a new approach based on a scale of severity," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 1047-1073, June.
    11. Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
    12. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    13. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    14. Paul S. F. Yip & Hua-Zhen Lin & Liqun Xi, 2005. "A Semiparametric Method for Estimating Population Size for Capture–Recapture Experiments with Random Covariates in Continuous Time," Biometrics, The International Biometric Society, vol. 61(4), pages 1085-1092, December.
    15. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    16. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    17. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    18. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    19. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    20. Matthias Trendtel & Alexander Robitzsch, 2021. "A Bayesian Item Response Model for Examining Item Position Effects in Complex Survey Data," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 34-57, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:2:p:640-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.