IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i3p517-540.html
   My bibliography  Save this article

Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models

Author

Listed:
  • Xiaoyue Xi
  • Simon E. F. Spencer
  • Matthew Hall
  • M. Kate Grabowski
  • Joseph Kagaayi
  • Oliver Ratmann
  • Rakai Health Sciences Program and PANGEA‐HIV

Abstract

Pathogen deep‐sequencing is an increasingly routinely used technology in infectious disease surveillance. We present a semi‐parametric Bayesian Poisson model to exploit these emerging data for inferring infectious disease transmission flows and the sources of infection at the population level. The framework is computationally scalable in high‐dimensional flow spaces thanks to Hilbert Space Gaussian process approximations, allows for sampling bias adjustments, and estimation of gender‐ and age‐specific transmission flows at finer resolution than previously possible. We apply the approach to densely sampled, population‐based HIV deep‐sequence data from Rakai, Uganda, and find substantive evidence that adolescent and young women were predominantly infected through age‐disparate relationships in the study period 2009–2015.

Suggested Citation

  • Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:3:p:517-540
    DOI: 10.1111/rssc.12544
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12544
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florent Ailloud & Xavier Didelot & Sabrina Woltemate & Gudrun Pfaffinger & Jörg Overmann & Ruth Christiane Bader & Christian Schulz & Peter Malfertheiner & Sebastian Suerbaum, 2019. "Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. James Raymer & Arkadiusz Wiśniowski & Jonathan J. Forster & Peter W. F. Smith & Jakub Bijak, 2013. "Integrated Modeling of European Migration," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 801-819, September.
    3. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    4. Hazelton, Martin L., 2001. "Inference for origin-destination matrices: estimation, prediction and reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 667-676, August.
    5. Tom Lindström & Daniel A Grear & Michael Buhnerkempe & Colleen T Webb & Ryan S Miller & Katie Portacci & Uno Wennergren, 2013. "A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shozen Dan & Yu Chen & Yining Chen & Melodie Monod & Veronika K Jaeger & Samir Bhatt & André Karch & Oliver Ratmann & on behalf of the Machine Learning & Global Health network, 2023. "Estimating fine age structure and time trends in human contact patterns from coarse contact data: The Bayesian rate consistency model," PLOS Computational Biology, Public Library of Science, vol. 19(6), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blume, Steffen O.P. & Corman, Francesco & Sansavini, Giovanni, 2022. "Bayesian origin-destination estimation in networked transit systems using nodal in- and outflow counts," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 60-94.
    2. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    3. Cappelen, Alexander W. & Sørensen, Erik Ø. & Tungodden, Bertil & Xu, Xiaogeng, 2025. "Risk taking on behalf of others: Does the timing of uncertainty revelation matter?," Discussion Paper Series in Economics 13/2025, Norwegian School of Economics, Department of Economics.
    4. Jose Pina-Sánchez & John Paul Gosling, 2020. "Tackling selection bias in sentencing data analysis: a new approach based on a scale of severity," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 1047-1073, June.
    5. Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
    6. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    7. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    8. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    9. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    10. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    11. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    12. Matthias Trendtel & Alexander Robitzsch, 2021. "A Bayesian Item Response Model for Examining Item Position Effects in Complex Survey Data," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 34-57, February.
    13. Spilker Finn & Ötting Marius, 2024. "No cheering in the background? Individual performance in professional darts during COVID-19," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 20(3), pages 219-234.
    14. Kuschnig, Nikolas, 2021. "Bayesian Spatial Econometrics and the Need for Software," Department of Economics Working Paper Series 318, WU Vienna University of Economics and Business.
    15. Guy J. Abel, 2015. "Estimates of Global Bilateral Migration Flows by Gender Between 1960 and 2010," VID Working Papers 1505, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    16. Jared Coopersmith & Thomas D. Cook & Jelena Zurovac & Duncan Chaplin & Lauren V. Forrow, 2022. "Internal And External Validity Of The Comparative Interrupted Time‐Series Design: A Meta‐Analysis," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 41(1), pages 252-277, January.
    17. Deniz Aksoy & David Carlson, 2022. "Electoral support and militants’ targeting strategies," Journal of Peace Research, Peace Research Institute Oslo, vol. 59(2), pages 229-241, March.
    18. Malin Tälle & Lotten Wiréhn & Daniel Ellström & Mattias Hjerpe & Maria Huge-Brodin & Per Jensen & Tom Lindström & Tina-Simone Neset & Uno Wennergren & Geneviève Metson, 2019. "Synergies and Trade-Offs for Sustainable Food Production in Sweden: An Integrated Approach," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    19. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    20. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:3:p:517-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.