IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i4p1747-1775.html
   My bibliography  Save this article

Causal discovery of gene regulation with incomplete data

Author

Listed:
  • Ronja Foraita
  • Juliane Friemel
  • Kathrin Günther
  • Thomas Behrens
  • Jörn Bullerdiek
  • Rolf Nimzyk
  • Wolfgang Ahrens
  • Vanessa Didelez

Abstract

Causal discovery algorithms aim to identify causal relations from observational data and have become a popular tool for analysing genetic regulatory systems. In this work, we applied causal discovery to obtain novel insights into the genetic regulation underlying head‐and‐neck squamous cell carcinoma. Some methodological challenges needed to be resolved first. The available data contained missing values, but most approaches to causal discovery require complete data. Hence, we propose a new procedure combining constraint‐based causal discovery with multiple imputation. This is based on using Rubin's rules for pooling tests of conditional independence. A second challenge was that causal discovery relies on strong assumptions and can be rather unstable. To assess the robustness of our results, we supplemented our investigation with sensitivity analyses, including a non‐parametric bootstrap to quantify the variability of the estimated causal structures. We applied these methods to investigate how the high mobility group AT‐Hook 2 (HMGA2) gene is incorporated in the protein 53 signalling pathway playing an important role in head‐and‐neck squamous cell carcinoma. Our results were quite stable and found direct associations between HMGA2 and other relevant proteins, but they did not provide clear support for the claim that HMGA2 itself is a key regulator gene.

Suggested Citation

  • Ronja Foraita & Juliane Friemel & Kathrin Günther & Thomas Behrens & Jörn Bullerdiek & Rolf Nimzyk & Wolfgang Ahrens & Vanessa Didelez, 2020. "Causal discovery of gene regulation with incomplete data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1747-1775, October.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1747-1775
    DOI: 10.1111/rssa.12565
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12565
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James M. Robins, 2003. "Uniform consistency in causal inference," Biometrika, Biometrika Trust, vol. 90(3), pages 491-515, September.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Kalisch, Markus & Mächler, Martin & Colombo, Diego & Maathuis, Marloes H. & Bühlmann, Peter, 2012. "Causal Inference Using Graphical Models with the R Package pcalg," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i11).
    4. Bert Vogelstein & David Lane & Arnold J. Levine, 2000. "Surfing the p53 network," Nature, Nature, vol. 408(6810), pages 307-310, November.
    5. Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
    6. Iris Pigeot & Fabian Sobotka & Svend Kreiner & Ronja Foraita, 2015. "The uncertainty of a selected graphical model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(11), pages 2335-2352, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Calderwood & Laura Siles & Peter J Eastmond & Smita Kurup & Richard J Morris, 2023. "A causal inference and Bayesian optimisation framework for modelling multi-trait relationships—Proof-of-concept using Brassica napus seed yield under controlled conditions," PLOS ONE, Public Library of Science, vol. 18(9), pages 1-24, September.
    2. Daniela Scidá, 2023. "Structural VAR and financial networks: A minimum distance approach to spatial modeling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 49-68, January.
    3. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    4. Scutari, Marco, 2017. "Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel and Optimized Implementations in the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i02).
    5. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    6. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    7. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    8. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    9. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    10. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    11. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    12. Lin Lin & Rachel L Spreng & Kelly E Seaton & S Moses Dennison & Lindsay C Dahora & Daniel J Schuster & Sheetal Sawant & Peter B Gilbert & Youyi Fong & Neville Kisalu & Andrew J Pollard & Georgia D Tom, 2024. "GeM-LR: Discovering predictive biomarkers for small datasets in vaccine studies," PLOS Computational Biology, Public Library of Science, vol. 20(11), pages 1-23, November.
    13. Vuong, Quan-Hoang & La, Viet-Phuong, 2019. "The bayesvl R package. User guide v0.8.1," OSF Preprints w5dx6, Center for Open Science.
    14. Aleix Alcacer & Irene Epifanio & Jorge Valero & Alfredo Ballester, 2021. "Combining Classification and User-Based Collaborative Filtering for Matching Footwear Size," Mathematics, MDPI, vol. 9(7), pages 1-15, April.
    15. Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Darío Ramos-López & Ana D. Maldonado, 2021. "Cost-Sensitive Variable Selection for Multi-Class Imbalanced Datasets Using Bayesian Networks," Mathematics, MDPI, vol. 9(2), pages 1-15, January.
    17. F. Cugnata & G. Perucca & S. Salini, 2017. "Bayesian networks and the assessment of universities' value added," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1785-1806, July.
    18. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    20. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1747-1775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.