IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v179y2016i3p727-748.html
   My bibliography  Save this article

Does more balanced survey response imply less non-response bias?

Author

Listed:
  • Barry Schouten
  • Fannie Cobben
  • Peter Lundquist
  • James Wagner

Abstract

No abstract is available for this item.

Suggested Citation

  • Barry Schouten & Fannie Cobben & Peter Lundquist & James Wagner, 2016. "Does more balanced survey response imply less non-response bias?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 727-748, June.
  • Handle: RePEc:bla:jorssa:v:179:y:2016:i:3:p:727-748
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.12152
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    3. Shlomo, Natalie & Skinner, Chris J. & Schouten, Barry, 2012. "Estimation of an indicator of the representativeness of survey response," LSE Research Online Documents on Economics 39124, London School of Economics and Political Science, LSE Library.
    4. Schouten, Barry & Shlomo, Natalie & Skinner, Chris J., 2011. "Indicators for monitoring and improving representativeness of response," LSE Research Online Documents on Economics 39121, London School of Economics and Political Science, LSE Library.
    5. Robert M. Groves & Steven G. Heeringa, 2006. "Responsive design for household surveys: tools for actively controlling survey errors and costs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 439-457, July.
    6. Annemieke Luiten & Barry Schouten, 2013. "Tailored fieldwork design to increase representative household survey response: an experiment in the Survey of Consumer Satisfaction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(1), pages 169-189, January.
    7. repec:mpr:mprres:4780 is not listed on IDEAS
    8. J. Michael Brick & Michael E. Jones, 2008. "Propensity to respond and nonresponse bias," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 51-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Gummer & Pablo Christmann & Sascha Verhoeven & Christof Wolf, 2022. "Using a responsive survey design to innovate self‐administered mixed‐mode surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 916-932, July.
    2. Särndal Carl-Erik & Lundquist Peter, 2017. "Inconsistent Regression and Nonresponse Bias: Exploring Their Relationship as a Function of Response Imbalance," Journal of Official Statistics, Sciendo, vol. 33(3), pages 709-734, September.
    3. Brick J. Michael & Tourangeau Roger, 2017. "Responsive Survey Designs for Reducing Nonresponse Bias," Journal of Official Statistics, Sciendo, vol. 33(3), pages 735-752, September.
    4. Wagner James & Olson Kristen, 2018. "An Analysis of Interviewer Travel and Field Outcomes in Two Field Surveys," Journal of Official Statistics, Sciendo, vol. 34(1), pages 211-237, March.
    5. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    6. Jamie C. Moore & Peter W. F. Smith & Gabriele B. Durrant, 2018. "Correlates of record linkage and estimating risks of non‐linkage biases in business data sets," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1211-1230, October.
    7. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    8. Felderer Barbara & Kirchner Antje & Kreuter Frauke, 2019. "The Effect of Survey Mode on Data Quality: Disentangling Nonresponse and Measurement Error Bias," Journal of Official Statistics, Sciendo, vol. 35(1), pages 93-115, March.
    9. Roberts Caroline & Vandenplas Caroline & Herzing Jessica M.E., 2020. "A Validation of R-Indicators as a Measure of the Risk of Bias using Data from a Nonresponse Follow-Up Survey," Journal of Official Statistics, Sciendo, vol. 36(3), pages 675-701, September.
    10. McCarthy Jaki & Wagner James & Sanders Herschel Lisette, 2017. "The Impact of Targeted Data Collection on Nonresponse Bias in an Establishment Survey: A Simulation Study of Adaptive Survey Design," Journal of Official Statistics, Sciendo, vol. 33(3), pages 857-871, September.
    11. Jamie C. Moore & Gabriele B. Durrant & Peter W. F. Smith, 2021. "Do coefficients of variation of response propensities approximate non‐response biases during survey data collection?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 301-323, January.
    12. Burger Joep & Perryck Koen & Schouten Barry, 2017. "Robustness of Adaptive Survey Designs to Inaccuracy of Design Parameters," Journal of Official Statistics, Sciendo, vol. 33(3), pages 687-708, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberts Caroline & Vandenplas Caroline & Herzing Jessica M.E., 2020. "A Validation of R-Indicators as a Measure of the Risk of Bias using Data from a Nonresponse Follow-Up Survey," Journal of Official Statistics, Sciendo, vol. 36(3), pages 675-701, September.
    2. Brick J. Michael, 2013. "Unit Nonresponse and Weighting Adjustments: A Critical Review," Journal of Official Statistics, Sciendo, vol. 29(3), pages 329-353, June.
    3. Barry Schouten & Natalie Shlomo, 2017. "Selecting Adaptive Survey Design Strata with Partial R-indicators," International Statistical Review, International Statistical Institute, vol. 85(1), pages 143-163, April.
    4. Thais Paiva & Jerry Reiter, 2014. "Using Imputation Techniques To Evaluate Stopping Rules In Adaptive Survey Design," Working Papers 14-40, Center for Economic Studies, U.S. Census Bureau.
    5. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    6. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    7. Roger Tourangeau & J. Michael Brick & Sharon Lohr & Jane Li, 2017. "Adaptive and responsive survey designs: a review and assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 203-223, January.
    8. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    9. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    10. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    11. Raphael Nishimura & James Wagner & Michael Elliott, 2016. "Alternative Indicators for the Risk of Non-response Bias: A Simulation Study," International Statistical Review, International Statistical Institute, vol. 84(1), pages 43-62, April.
    12. Fei Wang & Yuhao Deng, 2023. "Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    13. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    14. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    15. van Berkel Kees & van der Doef Suzanne & Schouten Barry, 2020. "Implementing Adaptive Survey Design with an Application to the Dutch Health Survey," Journal of Official Statistics, Sciendo, vol. 36(3), pages 609-629, September.
    16. Stephanie Coffey, PhD. & Jaya Damineni & John Eltinge, PhD. & Anup Mathur, PhD. & Kayla Varela & Allison Zotti, 2023. "Some Open Questions on Multiple-Source Extensions of Adaptive-Survey Design Concepts and Methods," Working Papers 23-03, Center for Economic Studies, U.S. Census Bureau.
    17. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    18. Do, D. Phuong & Frank, Reanne & Finch, Brian Karl, 2012. "Does SES explain more of the black/white health gap than we thought? Revisiting our approach toward understanding racial disparities in health," Social Science & Medicine, Elsevier, vol. 74(9), pages 1385-1393.
    19. Li-Chun Zhang & Ib Thomsen & Øyvin Kleven, 2013. "On the Use of Auxiliary and Paradata for Dealing With Non-sampling Errors in Household Surveys," International Statistical Review, International Statistical Institute, vol. 81(2), pages 270-288, August.
    20. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:179:y:2016:i:3:p:727-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.