IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i2p535-547.html
   My bibliography  Save this article

Toward a low‐carbon and circular building sector: Building strategies and urbanization pathways for the Netherlands

Author

Listed:
  • Janneke van Oorschot
  • Benjamin Sprecher
  • Bart Rijken
  • Pieter Witteveen
  • Merlijn Blok
  • Nico Schouten
  • Ester van der Voet

Abstract

Buildings are an important part of society's environmental impacts, both in the construction and in the use phase. As the energy performance of buildings improve, construction materials become more important as a cause of environmental impact. Less attention has been given to those materials. We explore, as an alternative for conventional buildings, the use of biobased materials and circular building practices. In addition to building design, we analyze the effect of urbanization. We assess the potential to close material cycles together with the material related impact, between 2018 and 2050 in the Netherlands. Our results show a limited potential to close material cycles until 2050, as a result of slow stock turnover and growth of the building stock. At present, end‐of‐life recycling rates are low, further limiting circularity. Primary material demand can be lowered when shifting toward biobased or circular construction. This shift also reduces material related carbon emissions. Large‐scale implementation of biobased construction, however, drastically increases land area required for wood production. Material demand differs strongly spatially and depends on the degree of urbanization. Urbanization results in higher building replacement rates, but constructed dwellings are generally small compared to scenarios with more rural developments. The approach presented in this work can be used to analyze strategies aimed at closing material cycles in the building sector and lowering buildings' embodied environmental impact, at different spatial scales.

Suggested Citation

  • Janneke van Oorschot & Benjamin Sprecher & Bart Rijken & Pieter Witteveen & Merlijn Blok & Nico Schouten & Ester van der Voet, 2023. "Toward a low‐carbon and circular building sector: Building strategies and urbanization pathways for the Netherlands," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 535-547, April.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:2:p:535-547
    DOI: 10.1111/jiec.13375
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13375
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefan Pauliuk & Niko Heeren, 2021. "Material efficiency and its contribution to climate change mitigation in Germany: A deep decarbonization scenario analysis until 2060," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 479-493, April.
    2. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    3. Jing Guo & Tomer Fishman & Yao Wang & Alessio Miatto & Wendy Wuyts & Licheng Zheng & Heming Wang & Hiroki Tanikawa, 2021. "Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 162-175, February.
    4. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    6. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    7. Hiroki Tanikawa & Tomer Fishman & Keijiro Okuoka & Kenji Sugimoto, 2015. "The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 778-791, October.
    8. Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2012. "Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building," Applied Energy, Elsevier, vol. 92(C), pages 462-472.
    9. Teun Johannes Verhagen & Marijn Louise Sauer & Ester van der Voet & Benjamin Sprecher, 2021. "Matching Demolition and Construction Material Flows, an Urban Mining Case Study," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elnour, Mugahid & Trigaux, Damien & Allacker, Karen, 2025. "Dynamic life cycle assessment of building stocks: a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    2. Liu, Qiqi & Liu, Yuan & Cai, Weiguang & Du, Yongjie, 2025. "Multi-dimensional building carbon emissions echelon peak target setting in China based on building types, sources, and indicators," Applied Energy, Elsevier, vol. 386(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    3. Franz Schug & David Frantz & Dominik Wiedenhofer & Helmut Haberl & Doris Virág & Sebastian van der Linden & Patrick Hostert, 2023. "High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 110-124, February.
    4. Liang Yuan & Weisheng Lu & Fan Xue & Maosu Li, 2023. "Building feature‐based machine learning regression to quantify urban material stocks: A Hong Kong study," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 336-349, February.
    5. Alessio Miatto & Claudia Sartori & Martina Bianchi & Paolo Borin & Andrea Giordano & Shoshanna Saxe & T.E. Graedel, 2022. "Tracking the material cycle of Italian bricks with the aid of building information modeling," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 609-626, April.
    6. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    7. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    8. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    10. Tanya Tsui & Cecilia Furlan & Alexander Wandl & Arjan Timmeren, 2024. "Spatial Parameters for Circular Construction Hubs: Location Criteria for a Circular Built Environment," Circular Economy and Sustainability, Springer, vol. 4(1), pages 317-338, March.
    11. Dong Yang & Mengyuan Dang & Jing Guo & Lingwen Sun & Ruirui Zhang & Feng Han & Feng Shi & Qian Liu & Hiroki Tanikawa, 2023. "Spatial–temporal dynamics of the built environment toward sustainability: A material stock and flow analysis in Chinese new and old urban areas," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 84-95, February.
    12. Benjamin Sprecher & Teun Johannes Verhagen & Marijn Louise Sauer & Michel Baars & John Heintz & Tomer Fishman, 2022. "Material intensity database for the Dutch building stock: Towards Big Data in material stock analysis," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 272-280, February.
    13. Ruichang Mao & Yi Bao & Huabo Duan & Gang Liu, 2021. "Global urban subway development, construction material stocks, and embodied carbon emissions," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    14. Claudia Cucchi & Ramzy Kahhat & Matías Gutiérrez & Alexis Dueñas & Carlos Mesta & Samy García & Johann Fellner, 2024. "Understanding the evolution of cities through urban stocks: A comparative analysis of Andean and coastal urban areas in Peru," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 813-827, August.
    15. Namya Sharma & Pradip P. Kalbar & Muhammad Salman, 2024. "Development of building stock model for an emerging city in India: Learnings for enabling circular economy in the built environment," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 751-767, August.
    16. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    17. repec:osf:osfxxx:t35aw_v1 is not listed on IDEAS
    18. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    19. Chenling Fu & Yan Zhang & Tianjie Deng & Ichiro Daigo, 2022. "The evolution of material stock research: From exploring to rising to hot studies," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 462-476, April.
    20. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    21. Hertwich, Edgar, 2024. "Unseen machines: illuminating equipment’s role in climate change mitigation and resource efficiency," OSF Preprints t35aw, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:2:p:535-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.