IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p597-600.html
   My bibliography  Save this article

Discussion on: Instrumented difference‐in‐differences, by Ting Ye, Ashkan Ertefaie, James Flory, Sean Hennessy and Dylan S. Small

Author

Listed:
  • Karla DiazOrdaz

Abstract

I discuss the assumptions needed for identification of average treatment effects and local average treatment effects in instrumented difference‐in‐differences (IDID), and the possible trade‐offs between assumptions of standard IV and those needed for the new proposal IDID, in one‐ and two‐sample settings. I also discuss the interpretation of the estimands identified under monotonicity. I conclude by suggesting possible extensions to the estimation method, by outlining a strategy to use data‐adaptive estimation of the nuisance parameters, based on recent developments.

Suggested Citation

  • Karla DiazOrdaz, 2023. "Discussion on: Instrumented difference‐in‐differences, by Ting Ye, Ashkan Ertefaie, James Flory, Sean Hennessy and Dylan S. Small," Biometrics, The International Biometric Society, vol. 79(2), pages 597-600, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:597-600
    DOI: 10.1111/biom.13785
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13785
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oliver Hines & Oliver Dukes & Karla Diaz-Ordaz & Stijn Vansteelandt, 2022. "Demystifying Statistical Learning Based on Efficient Influence Functions," The American Statistician, Taylor & Francis Journals, vol. 76(3), pages 292-304, July.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Yifan Cui & Eric Tchetgen Tchetgen, 2021. "A Semiparametric Instrumental Variable Approach to Optimal Treatment Regimes Under Endogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 162-173, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin R. Baer & Robert L. Strawderman & Ashkan Ertefaie, 2023. "Discussion on “Instrumental variable estimation of the causal hazard ratio,” by Linbo Wang, Eric Tchetgen Tchetgen, Torben Martinussen, and Stijn Vansteelandt," Biometrics, The International Biometric Society, vol. 79(2), pages 554-558, June.
    2. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    3. Zequn Jin & Gaoqian Xu & Xi Zheng & Yahong Zhou, 2025. "Policy Learning under Unobserved Confounding: A Robust and Efficient Approach," Papers 2507.20550, arXiv.org.
    4. Andreas Nordland & Torben Martinussen, 2024. "Estimation of treatment effect among treatment responders with a time‐to‐event endpoint," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1161-1180, September.
    5. Yuta Ota & Takahiro Hoshino & Taisuke Otsu, 2024. "Causal Inference With Auxiliary Observations," Keio-IES Discussion Paper Series 2024-022, Institute for Economics Studies, Keio University.
    6. Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Jan 2025.
    7. Abhinandan Dalal & Eric J. Tchetgen Tchetgen, 2025. "Partial Identification of Causal Effects for Endogenous Continuous Treatments," Papers 2508.13946, arXiv.org.
    8. Phillip Heiler & Asbj{o}rn Kaufmann & Bezirgen Veliyev, 2024. "Treatment Evaluation at the Intensive and Extensive Margins," Papers 2412.11179, arXiv.org.
    9. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Asanov, Anastasiya-Mariya & Asanov, Igor & Buenstorf, Guido, 2024. "A low-cost digital first aid tool to reduce psychological distress in refugees: A multi-country randomized controlled trial of self-help online in the first months after the invasion of Ukraine," Social Science & Medicine, Elsevier, vol. 362(C).
    11. Justin Whitehouse & Morgane Austern & Vasilis Syrgkanis, 2025. "Inference on Optimal Policy Values and Other Irregular Functionals via Smoothing," Papers 2507.11780, arXiv.org.
    12. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    13. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    15. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    16. Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross-border bank claims: The role of foreign-owned banks in emerging countries," Working Papers 2023.06, International Network for Economic Research - INFER.
    17. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    18. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    19. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    20. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:597-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.