IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i4p1140-1149.html
   My bibliography  Save this article

Instrumental variables estimation of exposure effects on a time‐to‐event endpoint using structural cumulative survival models

Author

Listed:
  • Torben Martinussen
  • Stijn Vansteelandt
  • Eric J. Tchetgen Tchetgen
  • David M. Zucker

Abstract

The use of instrumental variables for estimating the effect of an exposure on an outcome is popular in econometrics, and increasingly so in epidemiology. This increasing popularity may be attributed to the natural occurrence of instrumental variables in observational studies that incorporate elements of randomization, either by design or by nature (e.g., random inheritance of genes). Instrumental variables estimation of exposure effects is well established for continuous outcomes and to some extent for binary outcomes. It is, however, largely lacking for time‐to‐event outcomes because of complications due to censoring and survivorship bias. In this article, we make a novel proposal under a class of structural cumulative survival models which parameterize time‐varying effects of a point exposure directly on the scale of the survival function; these models are essentially equivalent with a semi‐parametric variant of the instrumental variables additive hazards model. We propose a class of recursive instrumental variable estimators for these exposure effects, and derive their large sample properties along with inferential tools. We examine the performance of the proposed method in simulation studies and illustrate it in a Mendelian randomization study to evaluate the effect of diabetes on mortality using data from the Health and Retirement Study. We further use the proposed method to investigate potential benefit from breast cancer screening on subsequent breast cancer mortality based on the HIP‐study.

Suggested Citation

  • Torben Martinussen & Stijn Vansteelandt & Eric J. Tchetgen Tchetgen & David M. Zucker, 2017. "Instrumental variables estimation of exposure effects on a time‐to‐event endpoint using structural cumulative survival models," Biometrics, The International Biometric Society, vol. 73(4), pages 1140-1149, December.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1140-1149
    DOI: 10.1111/biom.12699
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12699
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    2. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    3. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    4. Jialiang Li & Jason Fine & Alan Brookhart, 2015. "Instrumental variable additive hazards models," Biometrics, The International Biometric Society, vol. 71(1), pages 122-130, March.
    5. Sally Picciotto & Miguel A. Hernán & John H. Page & Jessica G. Young & James M. Robins, 2012. "Structural Nested Cumulative Failure Time Models to Estimate the Effects of Interventions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 886-900, September.
    6. Marshall M. Joffe & Wei Peter Yang & Harold Feldman, 2012. "G-Estimation and Artificial Censoring: Problems, Challenges, and Applications," Biometrics, The International Biometric Society, vol. 68(1), pages 275-286, March.
    7. repec:fth:prinin:455 is not listed on IDEAS
    8. Jack Cuzick & Peter Sasieni & Jonathan Myles & Jonathan Tyrer, 2007. "Estimating the effect of treatment in a proportional hazards model in the presence of non‐compliance and contamination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 565-588, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Liu, 2023. "A Theory Guide to Using Control Functions to Instrument Hazard Models," Papers 2312.03165, arXiv.org.
    2. Matthias Brueckner & Andrew Titman & Thomas Jaki, 2019. "Instrumental variable estimation in semi‐parametric additive hazards models," Biometrics, The International Biometric Society, vol. 75(1), pages 110-120, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Instrumental variable estimation of the causal hazard ratio," Biometrics, The International Biometric Society, vol. 79(2), pages 539-550, June.
    2. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
    3. Doyle, Joseph J., 2013. "Causal effects of foster care: An instrumental-variables approach," Children and Youth Services Review, Elsevier, vol. 35(7), pages 1143-1151.
    4. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    5. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    6. Eva Deuchert & Martin Huber, 2017. "A Cautionary Tale About Control Variables in IV Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 411-425, June.
    7. Karim Chalak & Halbert White, 2011. "Viewpoint: An extended class of instrumental variables for the estimation of causal effects," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 44(1), pages 1-51, February.
    8. Matthias Brueckner & Andrew Titman & Thomas Jaki, 2019. "Instrumental variable estimation in semi‐parametric additive hazards models," Biometrics, The International Biometric Society, vol. 75(1), pages 110-120, March.
    9. Alexander Ahammer, 2016. "How Physicians Affect Patients’ Employment Outcomes Through Deciding on Sick Leave Durations," Economics working papers 2016-05, Department of Economics, Johannes Kepler University Linz, Austria.
    10. Gonzalo Vazquez-Bare, 2020. "Causal Spillover Effects Using Instrumental Variables," Papers 2003.06023, arXiv.org, revised Dec 2021.
    11. Andrew Ying & Eric J. Tchetgen Tchetgen, 2023. "Structural cumulative survival models for estimation of treatment effects accounting for treatment switching in randomized experiments," Biometrics, The International Biometric Society, vol. 79(3), pages 1597-1609, September.
    12. Adewale M. Ogunmodede & Mary O. Ogunsanwo & Victor Manyong, 2020. "Unlocking the Potential of Agribusiness in Africa through Youth Participation: An Impact Evaluation of N-Power Agro Empowerment Program in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    13. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.
    14. Joshua Angrist, 2005. "Instrumental Variables Methods in Experimental Criminological Research: What, Why, and How?," NBER Technical Working Papers 0314, National Bureau of Economic Research, Inc.
    15. Kern, Holger & Hainmueller, Jens, 2007. "Opium for the Masses: How Foreign Free Media Can Stabilize Authoritarian Regimes," MPRA Paper 2702, University Library of Munich, Germany.
    16. Byeong Yeob Choi, 2021. "Instrumental variable estimation of truncated local average treatment effects," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-12, April.
    17. Olivier Bargain & Victor Stephane & Jérôme Valette, 2022. "Another brick in the wall. Immigration and electoral preferences: Direct evidence from state ballots," Review of International Economics, Wiley Blackwell, vol. 30(5), pages 1452-1477, November.
    18. Daniel Fernandes & John G. Lynch & Richard G. Netemeyer, 2014. "Financial Literacy, Financial Education, and Downstream Financial Behaviors," Management Science, INFORMS, vol. 60(8), pages 1861-1883, August.
    19. Elias Einiö & Henry G. Overman, 2016. "The (Displacement) Effects of Spatially Targeted Enterprise Initiatives: Evidence from UK LEGI," SERC Discussion Papers 0191, Centre for Economic Performance, LSE.
    20. Natalya Zelenyuk & Robert Faff & Shams Pathan, 2021. "The impact of voluntary capital adequacy disclosure on bank lending and liquidity creation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 3915-3935, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1140-1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.