IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0249642.html
   My bibliography  Save this article

Instrumental variable estimation of truncated local average treatment effects

Author

Listed:
  • Byeong Yeob Choi

Abstract

Instrumental variable (IV) analysis is used to address unmeasured confounding when comparing two nonrandomized treatment groups. The local average treatment effect (LATE) is a causal estimand that can be identified by an IV. The LATE approach is appealing because its identification relies on weaker assumptions than those in other IV approaches requiring a homogeneous treatment effect assumption. If the instrument is confounded by some covariates, then one can use a weighting estimator, for which the outcome and treatment are weighted by instrumental propensity scores. The weighting estimator for the LATE has a large variance when the IV is weak and the target population, i.e., the compliers, is relatively small. We propose a truncated LATE that can be estimated more reliably than the regular LATE in the presence of a weak IV. In our approach, subjects who contribute substantially to the weak IV are identified by their probabilities of being compliers, and they are removed based on a pre-specified threshold. We discuss interpretation of the proposed estimand and related inference method. Simulation and real data experiments demonstrate that the proposed truncated LATE can be estimated more precisely than the standard LATE.

Suggested Citation

  • Byeong Yeob Choi, 2021. "Instrumental variable estimation of truncated local average treatment effects," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-12, April.
  • Handle: RePEc:plo:pone00:0249642
    DOI: 10.1371/journal.pone.0249642
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249642
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0249642&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0249642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    3. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    4. Brookhart M. Alan & Schneeweiss Sebastian, 2007. "Preference-Based Instrumental Variable Methods for the Estimation of Treatment Effects: Assessing Validity and Interpreting Results," The International Journal of Biostatistics, De Gruyter, vol. 3(1), pages 1-25, December.
    5. Tan, Zhiqiang, 2006. "Regression and Weighting Methods for Causal Inference Using Instrumental Variables," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1607-1618, December.
    6. Jialiang Li & Jason Fine & Alan Brookhart, 2015. "Instrumental variable additive hazards models," Biometrics, The International Biometric Society, vol. 71(1), pages 122-130, March.
    7. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    8. Byeong Yeob Choi & Chen-Pin Wang & Joel Michalek & Jonathan Gelfond, 2019. "Power comparison for propensity score methods," Computational Statistics, Springer, vol. 34(2), pages 743-761, June.
    9. Matthias Brueckner & Andrew Titman & Thomas Jaki, 2019. "Instrumental variable estimation in semi‐parametric additive hazards models," Biometrics, The International Biometric Society, vol. 75(1), pages 110-120, March.
    10. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    11. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    12. Xuran Wang & Yang Jiang & Nancy R. Zhang & Dylan S. Small, 2018. "Sensitivity analysis and power for instrumental variable studies," Biometrics, The International Biometric Society, vol. 74(4), pages 1150-1160, December.
    13. Brian K Lee & Justin Lessler & Elizabeth A Stuart, 2011. "Weight Trimming and Propensity Score Weighting," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-6, March.
    14. Byeong Yeob Choi & Jason P Fine & M Alan Brookhart, 2017. "On two-stage estimation of structural instrumental variable models," Biometrika, Biometrika Trust, vol. 104(4), pages 881-899.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    2. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
    4. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    5. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.
    6. Silvia Moler‐Zapata & Richard Grieve & Anirban Basu & Stephen O’Neill, 2023. "How does a local instrumental variable method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health Economics, John Wiley & Sons, Ltd., vol. 32(9), pages 2113-2126, September.
    7. Chunrong Ai & Lukang Huang & Zheng Zhang, 2018. "A Simple and Efficient Estimation of the Average Treatment Effect in the Presence of Unmeasured Confounders," Papers 1807.05678, arXiv.org.
    8. Marco Caliendo & Stefan Tübbicke, 2020. "New evidence on long-term effects of start-up subsidies: matching estimates and their robustness," Empirical Economics, Springer, vol. 59(4), pages 1605-1631, October.
    9. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    10. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    11. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    12. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    13. McLaughlin, Joanne Song, 2017. "Does Communist party membership pay? Estimating the economic returns to party membership in the labor market in China," Journal of Comparative Economics, Elsevier, vol. 45(4), pages 963-983.
    14. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    15. Hugo Bodory & Martin Huber & Michael Lechner, 2022. "The finite sample performance of instrumental variable-based estimators of the Local Average Treatment Effect when controlling for covariates," Papers 2212.07379, arXiv.org.
    16. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    17. Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
    18. Donald, Stephen G. & Hsu, Yu-Chin & Lieli, Robert P., 2014. "Inverse probability weighted estimation of local average treatment effects: A higher order MSE expansion," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 132-138.
    19. Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org.
    20. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0249642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.